false

Supervised Similarity for Firm Linkages

Supervised Similarity for Firm Linkages ArXiv ID: 2506.19856 “View on arXiv” Authors: Ryan Samson, Adrian Banner, Luca Candelori, Sebastien Cottrell, Tiziana Di Matteo, Paul Duchnowski, Vahagn Kirakosyan, Jose Marques, Kharen Musaelian, Stefano Pasquali, Ryan Stever, Dario Villani Abstract We introduce a novel proxy for firm linkages, Characteristic Vector Linkages (CVLs). We use this concept to estimate firm linkages, first through Euclidean similarity, and then by applying Quantum Cognition Machine Learning (QCML) to similarity learning. We demonstrate that both methods can be used to construct profitable momentum spillover trading strategies, but QCML similarity outperforms the simpler Euclidean similarity. ...

June 9, 2025 · 1 min · Research Team

Follow the Leader: Enhancing Systematic Trend-Following Using Network Momentum

Follow the Leader: Enhancing Systematic Trend-Following Using Network Momentum ArXiv ID: 2501.07135 “View on arXiv” Authors: Unknown Abstract We present a systematic, trend-following strategy, applied to commodity futures markets, that combines univariate trend indicators with cross-sectional trend indicators that capture so-called {"\em momentum spillover"}, which can occur when there is a lead-lag relationship between the trending behaviour of different markets. Our strategy utilises two methods for detecting lead-lag relationships, with a method for computing {"\em network momentum"}, to produce a novel trend-following indicator. We use our new trend indicator to construct a portfolio whose performance we compare to a baseline model which uses only univariate indicators, and demonstrate statistically significant improvements in Sharpe ratio, skewness of returns, and downside performance, using synthetic bootstrapped data samples taken from time-series of actual prices. ...

January 13, 2025 · 2 min · Research Team

Network Momentum across Asset Classes

Network Momentum across Asset Classes ArXiv ID: 2308.11294 “View on arXiv” Authors: Unknown Abstract We investigate the concept of network momentum, a novel trading signal derived from momentum spillover across assets. Initially observed within the confines of pairwise economic and fundamental ties, such as the stock-bond connection of the same company and stocks linked through supply-demand chains, momentum spillover implies a propagation of momentum risk premium from one asset to another. The similarity of momentum risk premium, exemplified by co-movement patterns, has been spotted across multiple asset classes including commodities, equities, bonds and currencies. However, studying the network effect of momentum spillover across these classes has been challenging due to a lack of readily available common characteristics or economic ties beyond the company level. In this paper, we explore the interconnections of momentum features across a diverse range of 64 continuous future contracts spanning these four classes. We utilise a linear and interpretable graph learning model with minimal assumptions to reveal the intricacies of the momentum spillover network. By leveraging the learned networks, we construct a network momentum strategy that exhibits a Sharpe ratio of 1.5 and an annual return of 22%, after volatility scaling, from 2000 to 2022. This paper pioneers the examination of momentum spillover across multiple asset classes using only pricing data, presents a multi-asset investment strategy based on network momentum, and underscores the effectiveness of this strategy through robust empirical analysis. ...

August 22, 2023 · 2 min · Research Team