false

Enhanced Momentum with Momentum Transformers

Enhanced Momentum with Momentum Transformers ArXiv ID: 2412.12516 “View on arXiv” Authors: Unknown Abstract The primary objective of this research is to build a Momentum Transformer that is expected to outperform benchmark time-series momentum and mean-reversion trading strategies. We extend the ideas introduced in the paper Trading with the Momentum Transformer: An Intelligent and Interpretable Architecture to equities as the original paper primarily only builds upon futures and equity indices. Unlike conventional Long Short-Term Memory (LSTM) models, which operate sequentially and are optimized for processing local patterns, an attention mechanism equips our architecture with direct access to all prior time steps in the training window. This hybrid design, combining attention with an LSTM, enables the model to capture long-term dependencies, enhance performance in scenarios accounting for transaction costs, and seamlessly adapt to evolving market conditions, such as those witnessed during the Covid Pandemic. We average 4.14% returns which is similar to the original papers results. Our Sharpe is lower at an average of 1.12 due to much higher volatility which may be due to stocks being inherently more volatile than futures and indices. ...

December 17, 2024 · 2 min · Research Team

Extracting Alpha from Financial Analyst Networks

Extracting Alpha from Financial Analyst Networks ArXiv ID: 2410.20597 “View on arXiv” Authors: Unknown Abstract We investigate the effectiveness of a momentum trading signal based on the coverage network of financial analysts. This signal builds on the key information-brokerage role financial sell-side analysts play in modern stock markets. The baskets of stocks covered by each analyst can be used to construct a network between firms whose edge weights represent the number of analysts jointly covering both firms. Although the link between financial analysts coverage and co-movement of firms’ stock prices has been investigated in the literature, little effort has been made to systematically learn the most effective combination of signals from firms covered jointly by analysts in order to benefit from any spillover effect. To fill this gap, we build a trading strategy which leverages the analyst coverage network using a graph attention network. More specifically, our model learns to aggregate information from individual firm features and signals from neighbouring firms in a node-level forecasting task. We develop a portfolio based on those predictions which we demonstrate to exhibit an annualized returns of 29.44% and a Sharpe ratio of 4.06 substantially outperforming market baselines and existing graph machine learning based frameworks. We further investigate the performance and robustness of this strategy through extensive empirical analysis. Our paper represents one of the first attempts in using graph machine learning to extract actionable knowledge from the analyst coverage network for practical financial applications. ...

October 27, 2024 · 2 min · Research Team

Hedging Properties of Algorithmic Investment Strategies using Long Short-Term Memory and Time Series models for Equity Indices

Hedging Properties of Algorithmic Investment Strategies using Long Short-Term Memory and Time Series models for Equity Indices ArXiv ID: 2309.15640 “View on arXiv” Authors: Unknown Abstract This paper proposes a novel approach to hedging portfolios of risky assets when financial markets are affected by financial turmoils. We introduce a completely novel approach to diversification activity not on the level of single assets but on the level of ensemble algorithmic investment strategies (AIS) built based on the prices of these assets. We employ four types of diverse theoretical models (LSTM - Long Short-Term Memory, ARIMA-GARCH - Autoregressive Integrated Moving Average - Generalized Autoregressive Conditional Heteroskedasticity, momentum, and contrarian) to generate price forecasts, which are then used to produce investment signals in single and complex AIS. In such a way, we are able to verify the diversification potential of different types of investment strategies consisting of various assets (energy commodities, precious metals, cryptocurrencies, or soft commodities) in hedging ensemble AIS built for equity indices (S&P 500 index). Empirical data used in this study cover the period between 2004 and 2022. Our main conclusion is that LSTM-based strategies outperform the other models and that the best diversifier for the AIS built for the S&P 500 index is the AIS built for Bitcoin. Finally, we test the LSTM model for a higher frequency of data (1 hour). We conclude that it outperforms the results obtained using daily data. ...

September 27, 2023 · 2 min · Research Team