false

Selection Confidence Sets for Equally Weighted Portfolios

Selection Confidence Sets for Equally Weighted Portfolios ArXiv ID: 2510.14988 “View on arXiv” Authors: Davide Ferrari, Alessandro Fulci, Sandra Paterlini Abstract Given a universe of N assets, investors often form equally weighted portfolios (EWPs) by selecting subsets of assets. EWPs are simple, robust, and competitive out-of-sample, yet the uncertainty about which subset truly performs best is largely ignored. Traditional approaches typically rely on a single selected portfolio, but this fails to consider alternative investment strategies that may perform just as well when accounting for statistical uncertainty. To address this selection uncertainty, we introduce the Selection Confidence Set (SCS) for EWPs: the set of all portfolios that, under a given loss function and at a specified confidence level, contains the unknown set of optimal portfolios under repeated sampling. The SCS quantifies selection uncertainty by identifying a range of plausible portfolios, challenging the idea of a uniquely optimal choice. Like a confidence set, its size reflects uncertainty – growing with noisy or limited data, and shrinking as the sample size increases. Theoretically, we establish that the SCS covers the unknown optimal selection with high probability and characterize how its size grows with underlying uncertainty, corroborating these results through Monte Carlo experiments. Applications to the French 17-Industry Portfolios and Layer-1 cryptocurrencies underscore the importance of accounting for selection uncertainty when comparing equally weighted strategies. ...

September 26, 2025 · 2 min · Research Team

Crossing penalised CAViaR

Crossing penalised CAViaR ArXiv ID: 2501.10564 “View on arXiv” Authors: Unknown Abstract Dynamic quantiles, or Conditional Autoregressive Value at Risk (CAViaR) models, have been extensively studied at the individual level. However, efforts to estimate multiple dynamic quantiles jointly have been limited. Existing approaches either sequentially estimate fitted quantiles or impose restrictive assumptions on the data generating process. This paper fills this gap by proposing an objective function for the joint estimation of all quantiles, introducing a crossing penalty to guide the process. Monte Carlo experiments and an empirical application on the FTSE100 validate the effectiveness of the method, offering a flexible and robust approach to modelling multiple dynamic quantiles in time-series data. ...

January 17, 2025 · 2 min · Research Team