false

R&D-Agent-Quant: A Multi-Agent Framework for Data-Centric Factors and Model Joint Optimization

R&D-Agent-Quant: A Multi-Agent Framework for Data-Centric Factors and Model Joint Optimization ArXiv ID: 2505.15155 “View on arXiv” Authors: Yuante Li, Xu Yang, Xiao Yang, Minrui Xu, Xisen Wang, Weiqing Liu, Jiang Bian Abstract Financial markets pose fundamental challenges for asset return prediction due to their high dimensionality, non-stationarity, and persistent volatility. Despite advances in large language models and multi-agent systems, current quantitative research pipelines suffer from limited automation, weak interpretability, and fragmented coordination across key components such as factor mining and model innovation. In this paper, we propose R&D-Agent for Quantitative Finance, in short RD-Agent(Q), the first data-centric multi-agent framework designed to automate the full-stack research and development of quantitative strategies via coordinated factor-model co-optimization. RD-Agent(Q) decomposes the quant process into two iterative stages: a Research stage that dynamically sets goal-aligned prompts, formulates hypotheses based on domain priors, and maps them to concrete tasks, and a Development stage that employs a code-generation agent, Co-STEER, to implement task-specific code, which is then executed in real-market backtests. The two stages are connected through a feedback stage that thoroughly evaluates experimental outcomes and informs subsequent iterations, with a multi-armed bandit scheduler for adaptive direction selection. Empirically, RD-Agent(Q) achieves up to 2X higher annualized returns than classical factor libraries using 70% fewer factors, and outperforms state-of-the-art deep time-series models on real markets. Its joint factor-model optimization delivers a strong balance between predictive accuracy and strategy robustness. Our code is available at: https://github.com/microsoft/RD-Agent. ...

May 21, 2025 · 2 min · Research Team

How low-cost AI universal approximators reshape market efficiency

How low-cost AI universal approximators reshape market efficiency ArXiv ID: 2501.07489 “View on arXiv” Authors: Unknown Abstract The efficient market hypothesis (EMH) famously stated that prices fully reflect the information available to traders. This critically depends on the transfer of information into prices through trading strategies. Traders optimise their strategy with models of increasing complexity that identify the relationship between information and profitable trades more and more accurately. Under specific conditions, the increased availability of low-cost universal approximators, such as AI systems, should be naturally pushing towards more advanced trading strategies, potentially making it harder and harder for inefficient traders to profit. In this paper, we leverage on a generalised notion of market efficiency, based on the definition of an equilibrium price process, that allows us to distinguish different levels of model complexity through investors’ beliefs, and trading strategies optimisation, and discuss the relationship between AI-powered trading and the time-evolution of market efficiency. Finally, we outline the need for and the challenge of describing out-of-equilibrium market dynamics in an adaptive multi-agent environment. ...

January 13, 2025 · 2 min · Research Team

LLM-Powered Multi-Agent System for Automated Crypto Portfolio Management

LLM-Powered Multi-Agent System for Automated Crypto Portfolio Management ArXiv ID: 2501.00826 “View on arXiv” Authors: Unknown Abstract Cryptocurrency investment is inherently difficult due to its shorter history compared to traditional assets, the need to integrate vast amounts of data from various modalities, and the requirement for complex reasoning. While deep learning approaches have been applied to address these challenges, their black-box nature raises concerns about trust and explainability. Recently, large language models (LLMs) have shown promise in financial applications due to their ability to understand multi-modal data and generate explainable decisions. However, single LLM faces limitations in complex, comprehensive tasks such as asset investment. These limitations are even more pronounced in cryptocurrency investment, where LLMs have less domain-specific knowledge in their training corpora. To overcome these challenges, we propose an explainable, multi-modal, multi-agent framework for cryptocurrency investment. Our framework uses specialized agents that collaborate within and across teams to handle subtasks such as data analysis, literature integration, and investment decision-making for the top 30 cryptocurrencies by market capitalization. The expert training module fine-tunes agents using multi-modal historical data and professional investment literature, while the multi-agent investment module employs real-time data to make informed cryptocurrency investment decisions. Unique intrateam and interteam collaboration mechanisms enhance prediction accuracy by adjusting final predictions based on confidence levels within agent teams and facilitating information sharing between teams. Empirical evaluation using data from November 2023 to September 2024 demonstrates that our framework outperforms single-agent models and market benchmarks in classification, asset pricing, portfolio, and explainability performance. ...

January 1, 2025 · 2 min · Research Team

TradingAgents: Multi-Agents LLM Financial Trading Framework

TradingAgents: Multi-Agents LLM Financial Trading Framework ArXiv ID: 2412.20138 “View on arXiv” Authors: Unknown Abstract Significant progress has been made in automated problem-solving using societies of agents powered by large language models (LLMs). In finance, efforts have largely focused on single-agent systems handling specific tasks or multi-agent frameworks independently gathering data. However, the multi-agent systems’ potential to replicate real-world trading firms’ collaborative dynamics remains underexplored. TradingAgents proposes a novel stock trading framework inspired by trading firms, featuring LLM-powered agents in specialized roles such as fundamental analysts, sentiment analysts, technical analysts, and traders with varied risk profiles. The framework includes Bull and Bear researcher agents assessing market conditions, a risk management team monitoring exposure, and traders synthesizing insights from debates and historical data to make informed decisions. By simulating a dynamic, collaborative trading environment, this framework aims to improve trading performance. Detailed architecture and extensive experiments reveal its superiority over baseline models, with notable improvements in cumulative returns, Sharpe ratio, and maximum drawdown, highlighting the potential of multi-agent LLM frameworks in financial trading. TradingAgents is available at https://github.com/TauricResearch/TradingAgents. ...

December 28, 2024 · 2 min · Research Team

FinRobot: AI Agent for Equity Research and Valuation with Large Language Models

FinRobot: AI Agent for Equity Research and Valuation with Large Language Models ArXiv ID: 2411.08804 “View on arXiv” Authors: Unknown Abstract As financial markets grow increasingly complex, there is a rising need for automated tools that can effectively assist human analysts in equity research, particularly within sell-side research. While Generative AI (GenAI) has attracted significant attention in this field, existing AI solutions often fall short due to their narrow focus on technical factors and limited capacity for discretionary judgment. These limitations hinder their ability to adapt to new data in real-time and accurately assess risks, which diminishes their practical value for investors. This paper presents FinRobot, the first AI agent framework specifically designed for equity research. FinRobot employs a multi-agent Chain of Thought (CoT) system, integrating both quantitative and qualitative analyses to emulate the comprehensive reasoning of a human analyst. The system is structured around three specialized agents: the Data-CoT Agent, which aggregates diverse data sources for robust financial integration; the Concept-CoT Agent, which mimics an analysts reasoning to generate actionable insights; and the Thesis-CoT Agent, which synthesizes these insights into a coherent investment thesis and report. FinRobot provides thorough company analysis supported by precise numerical data, industry-appropriate valuation metrics, and realistic risk assessments. Its dynamically updatable data pipeline ensures that research remains timely and relevant, adapting seamlessly to new financial information. Unlike existing automated research tools, such as CapitalCube and Wright Reports, FinRobot delivers insights comparable to those produced by major brokerage firms and fundamental research vendors. We open-source FinRobot at \url{“https://github. com/AI4Finance-Foundation/FinRobot”}. ...

November 13, 2024 · 2 min · Research Team

Enhancing Investment Analysis: Optimizing AI-Agent Collaboration in Financial Research

Enhancing Investment Analysis: Optimizing AI-Agent Collaboration in Financial Research ArXiv ID: 2411.04788 “View on arXiv” Authors: Unknown Abstract In recent years, the application of generative artificial intelligence (GenAI) in financial analysis and investment decision-making has gained significant attention. However, most existing approaches rely on single-agent systems, which fail to fully utilize the collaborative potential of multiple AI agents. In this paper, we propose a novel multi-agent collaboration system designed to enhance decision-making in financial investment research. The system incorporates agent groups with both configurable group sizes and collaboration structures to leverage the strengths of each agent group type. By utilizing a sub-optimal combination strategy, the system dynamically adapts to varying market conditions and investment scenarios, optimizing performance across different tasks. We focus on three sub-tasks: fundamentals, market sentiment, and risk analysis, by analyzing the 2023 SEC 10-K forms of 30 companies listed on the Dow Jones Index. Our findings reveal significant performance variations based on the configurations of AI agents for different tasks. The results demonstrate that our multi-agent collaboration system outperforms traditional single-agent models, offering improved accuracy, efficiency, and adaptability in complex financial environments. This study highlights the potential of multi-agent systems in transforming financial analysis and investment decision-making by integrating diverse analytical perspectives. ...

November 7, 2024 · 2 min · Research Team

Simulate and Optimise: A two-layer mortgage simulator for designing novel mortgage assistance products

Simulate and Optimise: A two-layer mortgage simulator for designing novel mortgage assistance products ArXiv ID: 2411.00563 “View on arXiv” Authors: Unknown Abstract We develop a novel two-layer approach for optimising mortgage relief products through a simulated multi-agent mortgage environment. While the approach is generic, here the environment is calibrated to the US mortgage market based on publicly available census data and regulatory guidelines. Through the simulation layer, we assess the resilience of households to exogenous income shocks, while the optimisation layer explores strategies to improve the robustness of households to these shocks by making novel mortgage assistance products available to households. Households in the simulation are adaptive, learning to make mortgage-related decisions (such as product enrolment or strategic foreclosures) that maximize their utility, balancing their available liquidity and equity. We show how this novel two-layer simulation approach can successfully design novel mortgage assistance products to improve household resilience to exogenous shocks, and balance the costs of providing such products through post-hoc analysis. Previously, such analysis could only be conducted through expensive pilot studies involving real participants, demonstrating the benefit of the approach for designing and evaluating financial products. ...

November 1, 2024 · 2 min · Research Team

FinVision: A Multi-Agent Framework for Stock Market Prediction

FinVision: A Multi-Agent Framework for Stock Market Prediction ArXiv ID: 2411.08899 “View on arXiv” Authors: Unknown Abstract Financial trading has been a challenging task, as it requires the integration of vast amounts of data from various modalities. Traditional deep learning and reinforcement learning methods require large training data and often involve encoding various data types into numerical formats for model input, which limits the explainability of model behavior. Recently, LLM-based agents have demonstrated remarkable advancements in handling multi-modal data, enabling them to execute complex, multi-step decision-making tasks while providing insights into their thought processes. This research introduces a multi-modal multi-agent system designed specifically for financial trading tasks. Our framework employs a team of specialized LLM-based agents, each adept at processing and interpreting various forms of financial data, such as textual news reports, candlestick charts, and trading signal charts. A key feature of our approach is the integration of a reflection module, which conducts analyses of historical trading signals and their outcomes. This reflective process is instrumental in enhancing the decision-making capabilities of the system for future trading scenarios. Furthermore, the ablation studies indicate that the visual reflection module plays a crucial role in enhancing the decision-making capabilities of our framework. ...

October 29, 2024 · 2 min · Research Team

A Multi-agent Market Model Can Explain the Impact of AI Traders in Financial Markets -- A New Microfoundations of GARCH model

A Multi-agent Market Model Can Explain the Impact of AI Traders in Financial Markets – A New Microfoundations of GARCH model ArXiv ID: 2409.12516 “View on arXiv” Authors: Unknown Abstract The AI traders in financial markets have sparked significant interest in their effects on price formation mechanisms and market volatility, raising important questions for market stability and regulation. Despite this interest, a comprehensive model to quantitatively assess the specific impacts of AI traders remains undeveloped. This study aims to address this gap by modeling the influence of AI traders on market price formation and volatility within a multi-agent framework, leveraging the concept of microfoundations. Microfoundations involve understanding macroeconomic phenomena, such as market price formation, through the decision-making and interactions of individual economic agents. While widely acknowledged in macroeconomics, microfoundational approaches remain unexplored in empirical finance, particularly for models like the GARCH model, which captures key financial statistical properties such as volatility clustering and fat tails. This study proposes a multi-agent market model to derive the microfoundations of the GARCH model, incorporating three types of agents: noise traders, fundamental traders, and AI traders. By mathematically aggregating the micro-structure of these agents, we establish the microfoundations of the GARCH model. We validate this model through multi-agent simulations, confirming its ability to reproduce the stylized facts of financial markets. Finally, we analyze the impact of AI traders using parameters derived from these microfoundations, contributing to a deeper understanding of their role in market dynamics. ...

September 19, 2024 · 2 min · Research Team

Automate Strategy Finding with LLM in Quant Investment

Automate Strategy Finding with LLM in Quant Investment ArXiv ID: 2409.06289 “View on arXiv” Authors: Unknown Abstract We present a novel three-stage framework leveraging Large Language Models (LLMs) within a risk-aware multi-agent system for automate strategy finding in quantitative finance. Our approach addresses the brittleness of traditional deep learning models in financial applications by: employing prompt-engineered LLMs to generate executable alpha factor candidates across diverse financial data, implementing multimodal agent-based evaluation that filters factors based on market status, predictive quality while maintaining category balance, and deploying dynamic weight optimization that adapts to market conditions. Experimental results demonstrate the robust performance of the strategy in Chinese & US market regimes compared to established benchmarks. Our work extends LLMs capabilities to quantitative trading, providing a scalable architecture for financial signal extraction and portfolio construction. The overall framework significantly outperforms all benchmarks with 53.17% cumulative return on SSE50 (Jan 2023 to Jan 2024), demonstrating superior risk-adjusted performance and downside protection on the market. ...

September 10, 2024 · 2 min · Research Team