false

FinHEAR: Human Expertise and Adaptive Risk-Aware Temporal Reasoning for Financial Decision-Making

FinHEAR: Human Expertise and Adaptive Risk-Aware Temporal Reasoning for Financial Decision-Making ArXiv ID: 2506.09080 “View on arXiv” Authors: Jiaxiang Chen, Mingxi Zou, Zhuo Wang, Qifan Wang, Dongning Sun, Chi Zhang, Zenglin Xu Abstract Financial decision-making presents unique challenges for language models, demanding temporal reasoning, adaptive risk assessment, and responsiveness to dynamic events. While large language models (LLMs) show strong general reasoning capabilities, they often fail to capture behavioral patterns central to human financial decisions-such as expert reliance under information asymmetry, loss-averse sensitivity, and feedback-driven temporal adjustment. We propose FinHEAR, a multi-agent framework for Human Expertise and Adaptive Risk-aware reasoning. FinHEAR orchestrates specialized LLM-based agents to analyze historical trends, interpret current events, and retrieve expert-informed precedents within an event-centric pipeline. Grounded in behavioral economics, it incorporates expert-guided retrieval, confidence-adjusted position sizing, and outcome-based refinement to enhance interpretability and robustness. Empirical results on curated financial datasets show that FinHEAR consistently outperforms strong baselines across trend prediction and trading tasks, achieving higher accuracy and better risk-adjusted returns. ...

June 10, 2025 · 2 min · Research Team

Classifying and Clustering Trading Agents

Classifying and Clustering Trading Agents ArXiv ID: 2505.21662 “View on arXiv” Authors: Mateusz Wilinski, Anubha Goel, Alexandros Iosifidis, Juho Kanniainen Abstract The rapid development of sophisticated machine learning methods, together with the increased availability of financial data, has the potential to transform financial research, but also poses a challenge in terms of validation and interpretation. A good case study is the task of classifying financial investors based on their behavioral patterns. Not only do we have access to both classification and clustering tools for high-dimensional data, but also data identifying individual investors is finally available. The problem, however, is that we do not have access to ground truth when working with real-world data. This, together with often limited interpretability of modern machine learning methods, makes it difficult to fully utilize the available research potential. In order to deal with this challenge we propose to use a realistic agent-based model as a way to generate synthetic data. This way one has access to ground truth, large replicable data, and limitless research scenarios. Using this approach we show how, even when classifying trading agents in a supervised manner is relatively easy, a more realistic task of unsupervised clustering may give incorrect or even misleading results. We complete the results with investigating the details of how supervised techniques were able to successfully distinguish between different trading behaviors. ...

May 27, 2025 · 2 min · Research Team

Reproducing the first and second moment of empirical degree distributions

Reproducing the first and second moment of empirical degree distributions ArXiv ID: 2505.10373 “View on arXiv” Authors: Mattia Marzi, Francesca Giuffrida, Diego Garlaschelli, Tiziano Squartini Abstract The study of probabilistic models for the analysis of complex networks represents a flourishing research field. Among the former, Exponential Random Graphs (ERGs) have gained increasing attention over the years. So far, only linear ERGs have been extensively employed to gain insight into the structural organisation of real-world complex networks. None, however, is capable of accounting for the variance of the empirical degree distribution. To this aim, non-linear ERGs must be considered. After showing that the usual mean-field approximation forces the degree-corrected version of the two-star model to degenerate, we define a fitness-induced variant of it. Such a `softened’ model is capable of reproducing the sample variance, while retaining the explanatory power of its linear counterpart, within a purely canonical framework. ...

May 15, 2025 · 2 min · Research Team

Beyond the Black Box: Interpretability of LLMs in Finance

Beyond the Black Box: Interpretability of LLMs in Finance ArXiv ID: 2505.24650 “View on arXiv” Authors: Hariom Tatsat, Ariye Shater Abstract Large Language Models (LLMs) exhibit remarkable capabilities across a spectrum of tasks in financial services, including report generation, chatbots, sentiment analysis, regulatory compliance, investment advisory, financial knowledge retrieval, and summarization. However, their intrinsic complexity and lack of transparency pose significant challenges, especially in the highly regulated financial sector, where interpretability, fairness, and accountability are critical. As far as we are aware, this paper presents the first application in the finance domain of understanding and utilizing the inner workings of LLMs through mechanistic interpretability, addressing the pressing need for transparency and control in AI systems. Mechanistic interpretability is the most intuitive and transparent way to understand LLM behavior by reverse-engineering their internal workings. By dissecting the activations and circuits within these models, it provides insights into how specific features or components influence predictions - making it possible not only to observe but also to modify model behavior. In this paper, we explore the theoretical aspects of mechanistic interpretability and demonstrate its practical relevance through a range of financial use cases and experiments, including applications in trading strategies, sentiment analysis, bias, and hallucination detection. While not yet widely adopted, mechanistic interpretability is expected to become increasingly vital as adoption of LLMs increases. Advanced interpretability tools can ensure AI systems remain ethical, transparent, and aligned with evolving financial regulations. In this paper, we have put special emphasis on how these techniques can help unlock interpretability requirements for regulatory and compliance purposes - addressing both current needs and anticipating future expectations from financial regulators globally. ...

May 14, 2025 · 2 min · Research Team

Fast Learning in Quantitative Finance with Extreme Learning Machine

Fast Learning in Quantitative Finance with Extreme Learning Machine ArXiv ID: 2505.09551 “View on arXiv” Authors: Liexin Cheng, Xue Cheng, Shuaiqiang Liu Abstract A critical factor in adopting machine learning for time-sensitive financial tasks is computational speed, including model training and inference. This paper demonstrates that a broad class of such problems, especially those previously addressed using deep neural networks, can be efficiently solved using single-layer neural networks without iterative gradient-based training. This is achieved through the extreme learning machine (ELM) framework. ELM utilizes a single-layer network with randomly initialized hidden nodes and output weights obtained via convex optimization, enabling rapid training and inference. We present various applications in both supervised and unsupervised learning settings, including option pricing, intraday return prediction, volatility surface fitting, and numerical solution of partial differential equations. Across these examples, ELM demonstrates notable improvements in computational efficiency while maintaining comparable accuracy and generalization compared to deep neural networks and classical machine learning methods. We also briefly discuss theoretical aspects of ELM implementation and its generalization capabilities. ...

May 14, 2025 · 2 min · Research Team

Heterogeneous Trader Responses to Macroeconomic Surprises: Simulating Order Flow Dynamics

Heterogeneous Trader Responses to Macroeconomic Surprises: Simulating Order Flow Dynamics ArXiv ID: 2505.01962 “View on arXiv” Authors: Haochuan Wang Abstract Understanding how market participants react to shocks like scheduled macroeconomic news is crucial for both traders and policymakers. We develop a calibrated data generation process DGP that embeds four stylized trader archetypes retail, pension, institutional, and hedge funds into an extended CAPM augmented by CPI surprises. Each agents order size choice is driven by a softmax discrete choice rule over small, medium, and large trades, where utility depends on risk aversion, surprise magnitude, and liquidity. We aim to analyze each agent’s reaction to shocks and Monte Carlo experiments show that higher information, lower aversion agents take systematically larger positions and achieve higher average wealth. Retail investors under react on average, exhibiting smaller allocations and more dispersed outcomes. And ambient liquidity amplifies the sensitivity of order flow to surprise shocks. Our framework offers a transparent benchmark for analyzing order flow dynamics around macro releases and suggests how real time flow data could inform news impact inference. ...

May 4, 2025 · 2 min · Research Team

QuantBench: Benchmarking AI Methods for Quantitative Investment

QuantBench: Benchmarking AI Methods for Quantitative Investment ArXiv ID: 2504.18600 “View on arXiv” Authors: Saizhuo Wang, Hao Kong, Jiadong Guo, Fengrui Hua, Yiyan Qi, Wanyun Zhou, Jiahao Zheng, Xinyu Wang, Lionel M. Ni, Jian Guo Abstract The field of artificial intelligence (AI) in quantitative investment has seen significant advancements, yet it lacks a standardized benchmark aligned with industry practices. This gap hinders research progress and limits the practical application of academic innovations. We present QuantBench, an industrial-grade benchmark platform designed to address this critical need. QuantBench offers three key strengths: (1) standardization that aligns with quantitative investment industry practices, (2) flexibility to integrate various AI algorithms, and (3) full-pipeline coverage of the entire quantitative investment process. Our empirical studies using QuantBench reveal some critical research directions, including the need for continual learning to address distribution shifts, improved methods for modeling relational financial data, and more robust approaches to mitigate overfitting in low signal-to-noise environments. By providing a common ground for evaluation and fostering collaboration between researchers and practitioners, QuantBench aims to accelerate progress in AI for quantitative investment, similar to the impact of benchmark platforms in computer vision and natural language processing. ...

April 24, 2025 · 2 min · Research Team

Improving Bayesian Optimization for Portfolio Management with an Adaptive Scheduling

Improving Bayesian Optimization for Portfolio Management with an Adaptive Scheduling ArXiv ID: 2504.13529 “View on arXiv” Authors: Unknown Abstract Existing black-box portfolio management systems are prevalent in the financial industry due to commercial and safety constraints, though their performance can fluctuate dramatically with changing market regimes. Evaluating these non-transparent systems is computationally expensive, as fixed budgets limit the number of possible observations. Therefore, achieving stable and sample-efficient optimization for these systems has become a critical challenge. This work presents a novel Bayesian optimization framework (TPE-AS) that improves search stability and efficiency for black-box portfolio models under these limited observation budgets. Standard Bayesian optimization, which solely maximizes expected return, can yield erratic search trajectories and misalign the surrogate model with the true objective, thereby wasting the limited evaluation budget. To mitigate these issues, we propose a weighted Lagrangian estimator that leverages an adaptive schedule and importance sampling. This estimator dynamically balances exploration and exploitation by incorporating both the maximization of model performance and the minimization of the variance of model observations. It guides the search from broad, performance-seeking exploration towards stable and desirable regions as the optimization progresses. Extensive experiments and ablation studies, which establish our proposed method as the primary approach and other configurations as baselines, demonstrate its effectiveness across four backtest settings with three distinct black-box portfolio management models. ...

April 18, 2025 · 2 min · Research Team

Are Generative AI Agents Effective Personalized Financial Advisors?

Are Generative AI Agents Effective Personalized Financial Advisors? ArXiv ID: 2504.05862 “View on arXiv” Authors: Unknown Abstract Large language model-based agents are becoming increasingly popular as a low-cost mechanism to provide personalized, conversational advice, and have demonstrated impressive capabilities in relatively simple scenarios, such as movie recommendations. But how do these agents perform in complex high-stakes domains, where domain expertise is essential and mistakes carry substantial risk? This paper investigates the effectiveness of LLM-advisors in the finance domain, focusing on three distinct challenges: (1) eliciting user preferences when users themselves may be unsure of their needs, (2) providing personalized guidance for diverse investment preferences, and (3) leveraging advisor personality to build relationships and foster trust. Via a lab-based user study with 64 participants, we show that LLM-advisors often match human advisor performance when eliciting preferences, although they can struggle to resolve conflicting user needs. When providing personalized advice, the LLM was able to positively influence user behavior, but demonstrated clear failure modes. Our results show that accurate preference elicitation is key, otherwise, the LLM-advisor has little impact, or can even direct the investor toward unsuitable assets. More worryingly, users appear insensitive to the quality of advice being given, or worse these can have an inverse relationship. Indeed, users reported a preference for and increased satisfaction as well as emotional trust with LLMs adopting an extroverted persona, even though those agents provided worse advice. ...

April 8, 2025 · 2 min · Research Team

Causal Portfolio Optimization: Principles and Sensitivity-Based Solutions

Causal Portfolio Optimization: Principles and Sensitivity-Based Solutions ArXiv ID: 2504.05743 “View on arXiv” Authors: Unknown Abstract Fundamental and necessary principles for achieving efficient portfolio optimization based on asset and diversification dynamics are presented. The Commonality Principle is a necessary and sufficient condition for identifying optimal drivers of a portfolio in terms of its diversification dynamics. The proof relies on the Reichenbach Common Cause Principle, along with the fact that the sensitivities of portfolio constituents with respect to the common causal drivers are themselves causal. A conformal map preserves idiosyncratic diversification from the unconditional setting while optimizing systematic diversification on an embedded space of these sensitivities. Causal methodologies for combinatorial driver selection are presented, such as the use of Bayesian networks and correlation-based algorithms from Reichenbach’s principle. Limitations of linear models in capturing causality are discussed, and included for completeness alongside more advanced models such as neural networks. Portfolio optimization methods are presented that map risk from the sensitivity space to other risk measures of interest. Finally, the work introduces a novel risk management framework based on Common Causal Manifolds, including both theoretical development and experimental validation. The sensitivity space is predicted along the common causal manifold, which is modeled as a causal time system. Sensitivities are forecasted using SDEs calibrated to data previously extracted from neural networks to move along the manifold via its tangent bundles. An optimization method is then proposed that accumulates information across future predicted tangent bundles on the common causal time system manifold. It aggregates sensitivity-based distance metrics along the trajectory to build a comprehensive sensitivity distance matrix. This matrix enables trajectory-wide optimal diversification, taking into account future dynamics. ...

April 8, 2025 · 2 min · Research Team