false

MILLION: A General Multi-Objective Framework with Controllable Risk for Portfolio Management

MILLION: A General Multi-Objective Framework with Controllable Risk for Portfolio Management ArXiv ID: 2412.03038 “View on arXiv” Authors: Unknown Abstract Portfolio management is an important yet challenging task in AI for FinTech, which aims to allocate investors’ budgets among different assets to balance the risk and return of an investment. In this study, we propose a general Multi-objectIve framework with controLLable rIsk for pOrtfolio maNagement (MILLION), which consists of two main phases, i.e., return-related maximization and risk control. Specifically, in the return-related maximization phase, we introduce two auxiliary objectives, i.e., return rate prediction, and return rate ranking, combined with portfolio optimization to remit the overfitting problem and improve the generalization of the trained model to future markets. Subsequently, in the risk control phase, we propose two methods, i.e., portfolio interpolation and portfolio improvement, to achieve fine-grained risk control and fast risk adaption to a user-specified risk level. For the portfolio interpolation method, we theoretically prove that the risk can be perfectly controlled if the to-be-set risk level is in a proper interval. In addition, we also show that the return rate of the adjusted portfolio after portfolio interpolation is no less than that of the min-variance optimization, as long as the model in the reward maximization phase is effective. Furthermore, the portfolio improvement method can achieve greater return rates while keeping the same risk level compared to portfolio interpolation. Extensive experiments are conducted on three real-world datasets. The results demonstrate the effectiveness and efficiency of the proposed framework. ...

December 4, 2024 · 2 min · Research Team

Mirror Descent Algorithms for Risk Budgeting Portfolios

Mirror Descent Algorithms for Risk Budgeting Portfolios ArXiv ID: 2411.12323 “View on arXiv” Authors: Unknown Abstract This paper introduces and examines numerical approximation schemes for computing risk budgeting portfolios associated to positive homogeneous and sub-additive risk measures. We employ Mirror Descent algorithms to determine the optimal risk budgeting weights in both deterministic and stochastic settings, establishing convergence along with an explicit non-asymptotic quantitative rate for the averaged algorithm. A comprehensive numerical analysis follows, illustrating our theoretical findings across various risk measures – including standard deviation, Expected Shortfall, deviation measures, and Variantiles – and comparing the performance with that of the standard stochastic gradient descent method recently proposed in the literature. ...

November 19, 2024 · 2 min · Research Team

Optimal portfolio under ratio-type periodic evaluation in stochastic factor models under convex trading constraints

Optimal portfolio under ratio-type periodic evaluation in stochastic factor models under convex trading constraints ArXiv ID: 2411.13579 “View on arXiv” Authors: Unknown Abstract This paper studies a type of periodic utility maximization problems for portfolio management in incomplete stochastic factor models with convex trading constraints. The portfolio performance is periodically evaluated on the relative ratio of two adjacent wealth levels over an infinite horizon, featuring the dynamic adjustments in portfolio decision according to past achievements. Under power utility, we transform the original infinite horizon optimal control problem into an auxiliary terminal wealth optimization problem under a modified utility function. To cope with the convex trading constraints, we further introduce an auxiliary unconstrained optimization problem in a modified market model and develop the martingale duality approach to establish the existence of the dual minimizer such that the optimal unconstrained wealth process can be obtained using the dual representation. With the help of the duality results in the auxiliary problems, the relationship between the constrained and unconstrained models as well as some fixed point arguments, we finally derive and verify the optimal constrained portfolio process in a periodic manner for the original problem over an infinite horizon. ...

November 15, 2024 · 2 min · Research Team

Composing Ensembles of Instrument-Model Pairs for Optimizing Profitability in Algorithmic Trading

Composing Ensembles of Instrument-Model Pairs for Optimizing Profitability in Algorithmic Trading ArXiv ID: 2411.13559 “View on arXiv” Authors: Unknown Abstract Financial markets are nonlinear with complexity, where different types of assets are traded between buyers and sellers, each having a view to maximize their Return on Investment (ROI). Forecasting market trends is a challenging task since various factors like stock-specific news, company profiles, public sentiments, and global economic conditions influence them. This paper describes a daily price directional predictive system of financial instruments, addressing the difficulty of predicting short-term price movements. This paper will introduce the development of a novel trading system methodology by proposing a two-layer Composing Ensembles architecture, optimized through grid search, to predict whether the price will rise or fall the next day. This strategy was back-tested on a wide range of financial instruments and time frames, demonstrating an improvement of 20% over the benchmark, representing a standard investment strategy. ...

November 6, 2024 · 2 min · Research Team

Constrained portfolio optimization in a life-cycle model

Constrained portfolio optimization in a life-cycle model ArXiv ID: 2410.20060 “View on arXiv” Authors: Unknown Abstract This paper considers the constrained portfolio optimization in a generalized life-cycle model. The individual with a stochastic income manages a portfolio consisting of stocks, a bond, and life insurance to maximize his or her consumption level, death benefit, and terminal wealth. Meanwhile, the individual faces a convex-set trading constraint, of which the non-tradeable asset constraint, no short-selling constraint, and no borrowing constraint are special cases. Following Cuoco (1997), we build the artificial markets to derive the dual problem and prove the existence of the original problem. With additional discussions, we extend his uniformly bounded assumption on the interest rate to an almost surely finite expectation condition and enlarge his uniformly bounded assumption on the income process to a bounded expectation condition. Moreover, we propose a dual control neural network approach to compute tight lower and upper bounds for the original problem, which can be utilized in more general cases than the simulation of artificial markets strategies (SAMS) approach in Bick et al. (2013). Finally, we conclude that when considering the trading constraints, the individual will reduce his or her demand for life insurance. ...

October 26, 2024 · 2 min · Research Team

Optimal life insurance and annuity decision under money illusion

Optimal life insurance and annuity decision under money illusion ArXiv ID: 2410.20128 “View on arXiv” Authors: Unknown Abstract This paper investigates the optimal consumption, investment, and life insurance/annuity decisions for a family in an inflationary economy under money illusion. The family can invest in a financial market that consists of nominal bonds, inflation-linked bonds, and a stock index. The breadwinner can also purchase life insurance or annuities that are available continuously. The family’s objective is to maximize the expected utility of a mixture of nominal and real consumption, as they partially overlook inflation and tend to think in terms of nominal rather than real monetary values. We formulate this life-cycle problem as a random horizon utility maximization problem and derive the optimal strategy. We calibrate our model to the U.S. data and demonstrate that money illusion increases life insurance demand for young adults and reduces annuity demand for retirees. Our findings indicate that the money illusion contributes to the annuity puzzle and highlights the role of financial literacy in an inflationary environment. ...

October 26, 2024 · 2 min · Research Team

Double Auctions: Formalization and Automated Checkers

Double Auctions: Formalization and Automated Checkers ArXiv ID: 2410.18751 “View on arXiv” Authors: Unknown Abstract Double auctions are widely used in financial markets, such as those for stocks, derivatives, currencies, and commodities, to match demand and supply. Once all buyers and sellers have placed their trade requests, the exchange determines how these requests are to be matched. The two most common objectives for determining the matching are maximizing trade volume at a uniform price and maximizing trade volume through dynamic pricing. Prior research has primarily focused on single-quantity trade requests. In this work, we extend the framework to handle multiple-quantity trade requests and present fully formalized matching algorithms for double auctions, along with their correctness proofs. We establish new uniqueness theorems, enabling automatic detection of violations in exchange systems by comparing their output to that of a verified program. All proofs are formalized in the Coq Proof Assistant, and we extract verified OCaml and Haskell programs that could serve as a resource for exchanges and market regulators. We demonstrate the practical applicability of our work by running the verified program on real market data from an exchange to automatically check for violations in the exchange algorithm. ...

October 24, 2024 · 2 min · Research Team

Quantum-Inspired Portfolio Optimization In The QUBO Framework

Quantum-Inspired Portfolio Optimization In The QUBO Framework ArXiv ID: 2410.05932 “View on arXiv” Authors: Unknown Abstract A quantum-inspired optimization approach is proposed to study the portfolio optimization aimed at selecting an optimal mix of assets based on the risk-return trade-off to achieve the desired goal in investment. By integrating conventional approaches with quantum-inspired methods for penalty coefficient estimation, this approach enables faster and accurate solutions to portfolio optimization which is validated through experiments using a real-world dataset of quarterly financial data spanning over ten-year period. In addition, the proposed preprocessing method of two-stage search further enhances the effectiveness of our approach, showing the ability to improve computational efficiency while maintaining solution accuracy through appropriate setting of parameters. This research contributes to the growing body of literature on quantum-inspired techniques in finance, demonstrating its potential as a useful tool for asset allocation and portfolio management. ...

October 8, 2024 · 2 min · Research Team

Decomposition Pipeline for Large-Scale Portfolio Optimization with Applications to Near-Term Quantum Computing

Decomposition Pipeline for Large-Scale Portfolio Optimization with Applications to Near-Term Quantum Computing ArXiv ID: 2409.10301 “View on arXiv” Authors: Unknown Abstract Industrially relevant constrained optimization problems, such as portfolio optimization and portfolio rebalancing, are often intractable or difficult to solve exactly. In this work, we propose and benchmark a decomposition pipeline targeting portfolio optimization and rebalancing problems with constraints. The pipeline decomposes the optimization problem into constrained subproblems, which are then solved separately and aggregated to give a final result. Our pipeline includes three main components: preprocessing of correlation matrices based on random matrix theory, modified spectral clustering based on Newman’s algorithm, and risk rebalancing. Our empirical results show that our pipeline consistently decomposes real-world portfolio optimization problems into subproblems with a size reduction of approximately 80%. Since subproblems are then solved independently, our pipeline drastically reduces the total computation time for state-of-the-art solvers. Moreover, by decomposing large problems into several smaller subproblems, the pipeline enables the use of near-term quantum devices as solvers, providing a path toward practical utility of quantum computers in portfolio optimization. ...

September 16, 2024 · 2 min · Research Team

Robust Reinforcement Learning with Dynamic Distortion Risk Measures

Robust Reinforcement Learning with Dynamic Distortion Risk Measures ArXiv ID: 2409.10096 “View on arXiv” Authors: Unknown Abstract In a reinforcement learning (RL) setting, the agent’s optimal strategy heavily depends on her risk preferences and the underlying model dynamics of the training environment. These two aspects influence the agent’s ability to make well-informed and time-consistent decisions when facing testing environments. In this work, we devise a framework to solve robust risk-aware RL problems where we simultaneously account for environmental uncertainty and risk with a class of dynamic robust distortion risk measures. Robustness is introduced by considering all models within a Wasserstein ball around a reference model. We estimate such dynamic robust risk measures using neural networks by making use of strictly consistent scoring functions, derive policy gradient formulae using the quantile representation of distortion risk measures, and construct an actor-critic algorithm to solve this class of robust risk-aware RL problems. We demonstrate the performance of our algorithm on a portfolio allocation example. ...

September 16, 2024 · 2 min · Research Team