false

Shocks-adaptive Robust Minimum Variance Portfolio for a Large Universe of Assets

Shocks-adaptive Robust Minimum Variance Portfolio for a Large Universe of Assets ArXiv ID: 2410.01826 “View on arXiv” Authors: Unknown Abstract This paper proposes a robust, shocks-adaptive portfolio in a large-dimensional assets universe where the number of assets could be comparable to or even larger than the sample size. It is well documented that portfolios based on optimizations are sensitive to outliers in return data. We deal with outliers by proposing a robust factor model, contributing methodologically through the development of a robust principal component analysis (PCA) for factor model estimation and a shrinkage estimation for the random error covariance matrix. This approach extends the well-regarded Principal Orthogonal Complement Thresholding (POET) method (Fan et al., 2013), enabling it to effectively handle heavy tails and sudden shocks in data. The novelty of the proposed robust method is its adaptiveness to both global and idiosyncratic shocks, without the need to distinguish them, which is useful in forming portfolio weights when facing outliers. We develop the theoretical results of the robust factor model and the robust minimum variance portfolio. Numerical and empirical results show the superior performance of the new portfolio. ...

September 16, 2024 · 2 min · Research Team

KodeXv0.1: A Family of State-of-the-Art Financial Large Language Models

KodeXv0.1: A Family of State-of-the-Art Financial Large Language Models ArXiv ID: 2409.13749 “View on arXiv” Authors: Unknown Abstract Although powerful, current cutting-edge LLMs may not fulfil the needs of highly specialised sectors. We introduce KodeXv0.1, a family of large language models that outclass GPT-4 in financial question answering. We utilise the base variants of Llama 3.1 8B and 70B and adapt them to the financial domain through a custom training regime. To this end, we collect and process a large number of publicly available financial documents such as earnings calls and business reports. These are used to generate a high-quality, synthetic dataset consisting of Context-Question-Answer triplets which closely mirror real-world financial tasks. Using the train split of this dataset, we perform RAG-aware 4bit LoRA instruction tuning runs of Llama 3.1 base variants to produce KodeX-8Bv0.1 and KodeX-70Bv0.1. We then complete extensive model evaluations using FinanceBench, FinQABench and the withheld test split of our dataset. Our results show that KodeX-8Bv0.1 is more reliable in financial contexts than cutting-edge instruct models in the same parameter regime, surpassing them by up to 9.24%. In addition, it is even capable of outperforming state-of-the-art proprietary models such as GPT-4 by up to 7.07%. KodeX-70Bv0.1 represents a further improvement upon this, exceeding GPT-4’s performance on every tested benchmark. ...

September 13, 2024 · 2 min · Research Team

Portfolio Stress Testing and Value at Risk (VaR) Incorporating Current Market Conditions

Portfolio Stress Testing and Value at Risk (VaR) Incorporating Current Market Conditions ArXiv ID: 2409.18970 “View on arXiv” Authors: Unknown Abstract Value at Risk (VaR) and stress testing are two of the most widely used approaches in portfolio risk management to estimate potential market value losses under adverse market moves. VaR quantifies potential loss in value over a specified horizon (such as one day or ten days) at a desired confidence level (such as 95’th percentile). In scenario design and stress testing, the goal is to construct extreme market scenarios such as those involving severe recession or a specific event of concern (such as a rapid increase in rates or a geopolitical event), and quantify potential impact of such scenarios on the portfolio. The goal of this paper is to propose an approach for incorporating prevailing market conditions in stress scenario design and estimation of VaR so that they provide more accurate and realistic insights about portfolio risk over the near term. The proposed approach is based on historical data where historical observations of market changes are given more weight if a certain period in history is “more similar” to the prevailing market conditions. Clusters of market conditions are identified using a Machine Learning approach called Variational Inference (VI) where for each cluster future changes in portfolio value are similar. VI based algorithm uses optimization techniques to obtain analytical approximations of the posterior probability density of cluster assignments (market regimes) and probabilities of different outcomes for changes in portfolio value. Covid related volatile period around the year 2020 is used to illustrate the performance of the proposed approach and in particular show how VaR and stress scenarios adapt quickly to changing market conditions. Another advantage of the proposed approach is that classification of market conditions into clusters can provide useful insights about portfolio performance under different market conditions. ...

September 12, 2024 · 3 min · Research Team

A Deep Reinforcement Learning Framework For Financial Portfolio Management

A Deep Reinforcement Learning Framework For Financial Portfolio Management ArXiv ID: 2409.08426 “View on arXiv” Authors: Unknown Abstract In this research paper, we investigate into a paper named “A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem” [“arXiv:1706.10059”]. It is a portfolio management problem which is solved by deep learning techniques. The original paper proposes a financial-model-free reinforcement learning framework, which consists of the Ensemble of Identical Independent Evaluators (EIIE) topology, a Portfolio-Vector Memory (PVM), an Online Stochastic Batch Learning (OSBL) scheme, and a fully exploiting and explicit reward function. Three different instants are used to realize this framework, namely a Convolutional Neural Network (CNN), a basic Recurrent Neural Network (RNN), and a Long Short-Term Memory (LSTM). The performance is then examined by comparing to a number of recently reviewed or published portfolio-selection strategies. We have successfully replicated their implementations and evaluations. Besides, we further apply this framework in the stock market, instead of the cryptocurrency market that the original paper uses. The experiment in the cryptocurrency market is consistent with the original paper, which achieve superior returns. But it doesn’t perform as well when applied in the stock market. ...

September 3, 2024 · 2 min · Research Team

Can an unsupervised clustering algorithm reproduce a categorization system?

Can an unsupervised clustering algorithm reproduce a categorization system? ArXiv ID: 2408.10340 “View on arXiv” Authors: Unknown Abstract Peer analysis is a critical component of investment management, often relying on expert-provided categorization systems. These systems’ consistency is questioned when they do not align with cohorts from unsupervised clustering algorithms optimized for various metrics. We investigate whether unsupervised clustering can reproduce ground truth classes in a labeled dataset, showing that success depends on feature selection and the chosen distance metric. Using toy datasets and fund categorization as real-world examples we demonstrate that accurately reproducing ground truth classes is challenging. We also highlight the limitations of standard clustering evaluation metrics in identifying the optimal number of clusters relative to the ground truth classes. We then show that if appropriate features are available in the dataset, and a proper distance metric is known (e.g., using a supervised Random Forest-based distance metric learning method), then an unsupervised clustering can indeed reproduce the ground truth classes as distinct clusters. ...

August 19, 2024 · 2 min · Research Team

Combining supervised and unsupervised learning methods to predict financial market movements

Combining supervised and unsupervised learning methods to predict financial market movements ArXiv ID: 2409.03762 “View on arXiv” Authors: Unknown Abstract The decisions traders make to buy or sell an asset depend on various analyses, with expertise required to identify patterns that can be exploited for profit. In this paper we identify novel features extracted from emergent and well-established financial markets using linear models and Gaussian Mixture Models (GMM) with the aim of finding profitable opportunities. We used approximately six months of data consisting of minute candles from the Bitcoin, Pepecoin, and Nasdaq markets to derive and compare the proposed novel features with commonly used ones. These features were extracted based on the previous 59 minutes for each market and used to identify predictions for the hour ahead. We explored the performance of various machine learning strategies, such as Random Forests (RF) and K-Nearest Neighbours (KNN) to classify market movements. A naive random approach to selecting trading decisions was used as a benchmark, with outcomes assumed to be equally likely. We used a temporal cross-validation approach using test sets of 40%, 30% and 20% of total hours to evaluate the learning algorithms’ performances. Our results showed that filtering the time series facilitates algorithms’ generalisation. The GMM filtering approach revealed that the KNN and RF algorithms produced higher average returns than the random algorithm. ...

August 19, 2024 · 2 min · Research Team

Designing Time-Series Models With Hypernetworks & Adversarial Portfolios

Designing Time-Series Models With Hypernetworks & Adversarial Portfolios ArXiv ID: 2407.20352 “View on arXiv” Authors: Unknown Abstract This article describes the methods that achieved 4th and 6th place in the forecasting and investment challenges, respectively, of the M6 competition, ultimately securing the 1st place in the overall duathlon ranking. In the forecasting challenge, we tested a novel meta-learning model that utilizes hypernetworks to design a parametric model tailored to a specific family of forecasting tasks. This approach allowed us to leverage similarities observed across individual forecasting tasks while also acknowledging potential heterogeneity in their data generating processes. The model’s training can be directly performed with backpropagation, eliminating the need for reliance on higher-order derivatives and is equivalent to a simultaneous search over the space of parametric functions and their optimal parameter values. The proposed model’s capabilities extend beyond M6, demonstrating superiority over state-of-the-art meta-learning methods in the sinusoidal regression task and outperforming conventional parametric models on time-series from the M4 competition. In the investment challenge, we adjusted portfolio weights to induce greater or smaller correlation between our submission and that of other participants, depending on the current ranking, aiming to maximize the probability of achieving a good rank. ...

July 29, 2024 · 2 min · Research Team

Optimal Text-Based Time-Series Indices

Optimal Text-Based Time-Series Indices ArXiv ID: 2405.10449 “View on arXiv” Authors: Unknown Abstract We propose an approach to construct text-based time-series indices in an optimal way–typically, indices that maximize the contemporaneous relation or the predictive performance with respect to a target variable, such as inflation. We illustrate our methodology with a corpus of news articles from the Wall Street Journal by optimizing text-based indices focusing on tracking the VIX index and inflation expectations. Our results highlight the superior performance of our approach compared to existing indices. ...

May 16, 2024 · 1 min · Research Team

Synchronization in a market model with time delays

Synchronization in a market model with time delays ArXiv ID: 2405.00046 “View on arXiv” Authors: Unknown Abstract We examine a system of N=2 coupled non-linear delay-differential equations representing financial market dynamics. In such time delay systems, coupled oscillations have been derived. We linearize the system for small time delays and study its collective dynamics. Using analytical and numerical solutions, we obtain the bifurcation diagrams and analyze the corresponding regions of amplitude death, phase locking, limit cycles and market synchronization in terms of the system frequency-like parameters and time delays. We further numerically explore higher order systems with N>2, and demonstrate that limit cycles can be maintained for coupled N-asset models with appropriate parameterization. ...

April 9, 2024 · 2 min · Research Team

Some variation of COBRA in sequential learning setup

Some variation of COBRA in sequential learning setup ArXiv ID: 2405.04539 “View on arXiv” Authors: Unknown Abstract This research paper introduces innovative approaches for multivariate time series forecasting based on different variations of the combined regression strategy. We use specific data preprocessing techniques which makes a radical change in the behaviour of prediction. We compare the performance of the model based on two types of hyper-parameter tuning Bayesian optimisation (BO) and Usual Grid search. Our proposed methodologies outperform all state-of-the-art comparative models. We illustrate the methodologies through eight time series datasets from three categories: cryptocurrency, stock index, and short-term load forecasting. ...

April 7, 2024 · 1 min · Research Team