false

DeepSupp: Attention-Driven Correlation Pattern Analysis for Dynamic Time Series Support and Resistance Levels Identification

DeepSupp: Attention-Driven Correlation Pattern Analysis for Dynamic Time Series Support and Resistance Levels Identification ArXiv ID: 2507.01971 “View on arXiv” Authors: Boris Kriuk, Logic Ng, Zarif Al Hossain Abstract Support and resistance (SR) levels are central to technical analysis, guiding traders in entry, exit, and risk management. Despite widespread use, traditional SR identification methods often fail to adapt to the complexities of modern, volatile markets. Recent research has introduced machine learning techniques to address the following challenges, yet most focus on price prediction rather than structural level identification. This paper presents DeepSupp, a new deep learning approach for detecting financial support levels using multi-head attention mechanisms to analyze spatial correlations and market microstructure relationships. DeepSupp integrates advanced feature engineering, constructing dynamic correlation matrices that capture evolving market relationships, and employs an attention-based autoencoder for robust representation learning. The final support levels are extracted through unsupervised clustering, leveraging DBSCAN to identify significant price thresholds. Comprehensive evaluations on S&P 500 tickers demonstrate that DeepSupp outperforms six baseline methods, achieving state-of-the-art performance across six financial metrics, including essential support accuracy and market regime sensitivity. With consistent results across diverse market conditions, DeepSupp addresses critical gaps in SR level detection, offering a scalable and reliable solution for modern financial analysis. Our approach highlights the potential of attention-based architectures to uncover nuanced market patterns and improve technical trading strategies. ...

June 22, 2025 · 2 min · Research Team

An Efficient deep learning model to Predict Stock Price Movement Based on Limit Order Book

An Efficient deep learning model to Predict Stock Price Movement Based on Limit Order Book ArXiv ID: 2505.22678 “View on arXiv” Authors: Jiahao Yang, Ran Fang, Ming Zhang, Jun Zhou Abstract In high-frequency trading (HFT), leveraging limit order books (LOB) to model stock price movements is crucial for achieving profitable outcomes. However, this task is challenging due to the high-dimensional and volatile nature of the original data. Even recent deep learning models often struggle to capture price movement patterns effectively, particularly without well-designed features. We observed that raw LOB data exhibits inherent symmetry between the ask and bid sides, and the bid-ask differences demonstrate greater stability and lower complexity compared to the original data. Building on this insight, we propose a novel approach in which leverages the Siamese architecture to enhance the performance of existing deep learning models. The core idea involves processing the ask and bid sides separately using the same module with shared parameters. We applied our Siamese-based methods to several widely used strong baselines and validated their effectiveness using data from 14 military industry stocks in the Chinese A-share market. Furthermore, we integrated multi-head attention (MHA) mechanisms with the Long Short-Term Memory (LSTM) module to investigate its role in modeling stock price movements. Our experiments used raw data and widely used Order Flow Imbalance (OFI) features as input with some strong baseline models. The results show that our method improves the performance of strong baselines in over 75$% of cases, excluding the Multi-Layer Perception (MLP) baseline, which performed poorly and is not considered practical. Furthermore, we found that Multi-Head Attention can enhance model performance, particularly over shorter forecasting horizons. ...

May 14, 2025 · 2 min · Research Team

Optimizing Portfolio with Two-Sided Transactions and Lending: A Reinforcement Learning Framework

Optimizing Portfolio with Two-Sided Transactions and Lending: A Reinforcement Learning Framework ArXiv ID: 2408.05382 “View on arXiv” Authors: Unknown Abstract This study presents a Reinforcement Learning (RL)-based portfolio management model tailored for high-risk environments, addressing the limitations of traditional RL models and exploiting market opportunities through two-sided transactions and lending. Our approach integrates a new environmental formulation with a Profit and Loss (PnL)-based reward function, enhancing the RL agent’s ability in downside risk management and capital optimization. We implemented the model using the Soft Actor-Critic (SAC) agent with a Convolutional Neural Network with Multi-Head Attention (CNN-MHA). This setup effectively manages a diversified 12-crypto asset portfolio in the Binance perpetual futures market, leveraging USDT for both granting and receiving loans and rebalancing every 4 hours, utilizing market data from the preceding 48 hours. Tested over two 16-month periods of varying market volatility, the model significantly outperformed benchmarks, particularly in high-volatility scenarios, achieving higher return-to-risk ratios and demonstrating robust profitability. These results confirm the model’s effectiveness in leveraging market dynamics and managing risks in volatile environments like the cryptocurrency market. ...

August 9, 2024 · 2 min · Research Team