false

MDGNN: Multi-Relational Dynamic Graph Neural Network for Comprehensive and Dynamic Stock Investment Prediction

MDGNN: Multi-Relational Dynamic Graph Neural Network for Comprehensive and Dynamic Stock Investment Prediction ArXiv ID: 2402.06633 “View on arXiv” Authors: Unknown Abstract The stock market is a crucial component of the financial system, but predicting the movement of stock prices is challenging due to the dynamic and intricate relations arising from various aspects such as economic indicators, financial reports, global news, and investor sentiment. Traditional sequential methods and graph-based models have been applied in stock movement prediction, but they have limitations in capturing the multifaceted and temporal influences in stock price movements. To address these challenges, the Multi-relational Dynamic Graph Neural Network (MDGNN) framework is proposed, which utilizes a discrete dynamic graph to comprehensively capture multifaceted relations among stocks and their evolution over time. The representation generated from the graph offers a complete perspective on the interrelationships among stocks and associated entities. Additionally, the power of the Transformer structure is leveraged to encode the temporal evolution of multiplex relations, providing a dynamic and effective approach to predicting stock investment. Further, our proposed MDGNN framework achieves the best performance in public datasets compared with state-of-the-art (SOTA) stock investment methods. ...

January 19, 2024 · 2 min · Research Team

Multi-relational Graph Diffusion Neural Network with Parallel Retention for Stock Trends Classification

Multi-relational Graph Diffusion Neural Network with Parallel Retention for Stock Trends Classification ArXiv ID: 2401.05430 “View on arXiv” Authors: Unknown Abstract Stock trend classification remains a fundamental yet challenging task, owing to the intricate time-evolving dynamics between and within stocks. To tackle these two challenges, we propose a graph-based representation learning approach aimed at predicting the future movements of multiple stocks. Initially, we model the complex time-varying relationships between stocks by generating dynamic multi-relational stock graphs. This is achieved through a novel edge generation algorithm that leverages information entropy and signal energy to quantify the intensity and directionality of inter-stock relations on each trading day. Then, we further refine these initial graphs through a stochastic multi-relational diffusion process, adaptively learning task-optimal edges. Subsequently, we implement a decoupled representation learning scheme with parallel retention to obtain the final graph representation. This strategy better captures the unique temporal features within individual stocks while also capturing the overall structure of the stock graph. Comprehensive experiments conducted on real-world datasets from two US markets (NASDAQ and NYSE) and one Chinese market (Shanghai Stock Exchange: SSE) validate the effectiveness of our method. Our approach consistently outperforms state-of-the-art baselines in forecasting next trading day stock trends across three test periods spanning seven years. Datasets and code have been released (https://github.com/pixelhero98/MGDPR). ...

January 5, 2024 · 2 min · Research Team