false

Multifractality and its sources in the digital currency market

Multifractality and its sources in the digital currency market ArXiv ID: 2510.13785 “View on arXiv” Authors: Stanisław Drożdż, Robert Kluszczyński, Jarosław Kwapień, Marcin Wątorek Abstract Multifractality in time series analysis characterizes the presence of multiple scaling exponents, indicating heterogeneous temporal structures and complex dynamical behaviors beyond simple monofractal models. In the context of digital currency markets, multifractal properties arise due to the interplay of long-range temporal correlations and heavy-tailed distributions of returns, reflecting intricate market microstructure and trader interactions. Incorporating multifractal analysis into the modeling of cryptocurrency price dynamics enhances the understanding of market inefficiencies, may improve volatility forecasting and facilitate the detection of critical transitions or regime shifts. Based on the multifractal cross-correlation analysis (MFCCA) whose spacial case is the multifractal detrended fluctuation analysis (MFDFA), as the most commonly used practical tools for quantifying multifractality, in the present contribution a recently proposed method of disentangling sources of multifractality in time series was applied to the most representative instruments from the digital market. They include Bitcoin (BTC), Ethereum (ETH), decentralized exchanges (DEX) and non-fungible tokens (NFT). The results indicate the significant role of heavy tails in generating a broad multifractal spectrum. However, they also clearly demonstrate that the primary source of multifractality are temporal correlations in the series, and without them, multifractality fades out. It appears characteristic that these temporal correlations, to a large extent, do not depend on the thickness of the tails of the fluctuation distribution. These observations, made here in the context of the digital currency market, provide a further strong argument for the validity of the proposed methodology of disentangling sources of multifractality in time series. ...

October 15, 2025 · 3 min · Research Team

Approaching multifractal complexity in decentralized cryptocurrency trading

Approaching multifractal complexity in decentralized cryptocurrency trading ArXiv ID: 2411.05951 “View on arXiv” Authors: Unknown Abstract Multifractality is a concept that helps compactly grasping the most essential features of the financial dynamics. In its fully developed form, this concept applies to essentially all mature financial markets and even to more liquid cryptocurrencies traded on the centralized exchanges. A new element that adds complexity to cryptocurrency markets is the possibility of decentralized trading. Based on the extracted tick-by-tick transaction data from the Universal Router contract of the Uniswap decentralized exchange, from June 6, 2023, to June 30, 2024, the present study using Multifractal Detrended Fluctuation Analysis (MFDFA) shows that even though liquidity on these new exchanges is still much lower compared to centralized exchanges convincing traces of multifractality are already emerging on this new trading as well. The resulting multifractal spectra are however strongly left-side asymmetric which indicates that this multifractality comes primarily from large fluctuations and small ones are more of the uncorrelated noise type. What is particularly interesting here is the fact that multifractality is more developed for time series representing transaction volumes than rates of return. On the level of these larger events a trace of multifractal cross-correlations between the two characteristics is also observed. ...

November 8, 2024 · 2 min · Research Team