false

Quantifying Qualitative Insights: Leveraging LLMs to Market Predict

Quantifying Qualitative Insights: Leveraging LLMs to Market Predict ArXiv ID: 2411.08404 “View on arXiv” Authors: Unknown Abstract Recent advancements in Large Language Models (LLMs) have the potential to transform financial analytics by integrating numerical and textual data. However, challenges such as insufficient context when fusing multimodal information and the difficulty in measuring the utility of qualitative outputs, which LLMs generate as text, have limited their effectiveness in tasks such as financial forecasting. This study addresses these challenges by leveraging daily reports from securities firms to create high-quality contextual information. The reports are segmented into text-based key factors and combined with numerical data, such as price information, to form context sets. By dynamically updating few-shot examples based on the query time, the sets incorporate the latest information, forming a highly relevant set closely aligned with the query point. Additionally, a crafted prompt is designed to assign scores to the key factors, converting qualitative insights into quantitative results. The derived scores undergo a scaling process, transforming them into real-world values that are used for prediction. Our experiments demonstrate that LLMs outperform time-series models in market forecasting, though challenges such as imperfect reproducibility and limited explainability remain. ...

November 13, 2024 · 2 min · Research Team

Stock Movement Prediction with Multimodal Stable Fusion via Gated Cross-Attention Mechanism

Stock Movement Prediction with Multimodal Stable Fusion via Gated Cross-Attention Mechanism ArXiv ID: 2406.06594 “View on arXiv” Authors: Unknown Abstract The accurate prediction of stock movements is crucial for investment strategies. Stock prices are subject to the influence of various forms of information, including financial indicators, sentiment analysis, news documents, and relational structures. Predominant analytical approaches, however, tend to address only unimodal or bimodal sources, neglecting the complexity of multimodal data. Further complicating the landscape are the issues of data sparsity and semantic conflicts between these modalities, which are frequently overlooked by current models, leading to unstable performance and limiting practical applicability. To address these shortcomings, this study introduces a novel architecture, named Multimodal Stable Fusion with Gated Cross-Attention (MSGCA), designed to robustly integrate multimodal input for stock movement prediction. The MSGCA framework consists of three integral components: (1) a trimodal encoding module, responsible for processing indicator sequences, dynamic documents, and a relational graph, and standardizing their feature representations; (2) a cross-feature fusion module, where primary and consistent features guide the multimodal fusion of the three modalities via a pair of gated cross-attention networks; and (3) a prediction module, which refines the fused features through temporal and dimensional reduction to execute precise movement forecasting. Empirical evaluations demonstrate that the MSGCA framework exceeds current leading methods, achieving performance gains of 8.1%, 6.1%, 21.7% and 31.6% on four multimodal datasets, respectively, attributed to its enhanced multimodal fusion stability. ...

June 6, 2024 · 2 min · Research Team

Ploutos: Towards interpretable stock movement prediction with financial large language model

Ploutos: Towards interpretable stock movement prediction with financial large language model ArXiv ID: 2403.00782 “View on arXiv” Authors: Unknown Abstract Recent advancements in large language models (LLMs) have opened new pathways for many domains. However, the full potential of LLMs in financial investments remains largely untapped. There are two main challenges for typical deep learning-based methods for quantitative finance. First, they struggle to fuse textual and numerical information flexibly for stock movement prediction. Second, traditional methods lack clarity and interpretability, which impedes their application in scenarios where the justification for predictions is essential. To solve the above challenges, we propose Ploutos, a novel financial LLM framework that consists of PloutosGen and PloutosGPT. The PloutosGen contains multiple primary experts that can analyze different modal data, such as text and numbers, and provide quantitative strategies from different perspectives. Then PloutosGPT combines their insights and predictions and generates interpretable rationales. To generate accurate and faithful rationales, the training strategy of PloutosGPT leverage rearview-mirror prompting mechanism to guide GPT-4 to generate rationales, and a dynamic token weighting mechanism to finetune LLM by increasing key tokens weight. Extensive experiments show our framework outperforms the state-of-the-art methods on both prediction accuracy and interpretability. ...

February 18, 2024 · 2 min · Research Team