false

Semiparametric Dynamic Copula Models for Portfolio Optimization

Semiparametric Dynamic Copula Models for Portfolio Optimization ArXiv ID: 2504.12266 “View on arXiv” Authors: Unknown Abstract The mean-variance portfolio model, based on the risk-return trade-off for optimal asset allocation, remains foundational in portfolio optimization. However, its reliance on restrictive assumptions about asset return distributions limits its applicability to real-world data. Parametric copula structures provide a novel way to overcome these limitations by accounting for asymmetry, heavy tails, and time-varying dependencies. Existing methods have been shown to rely on fixed or static dependence structures, thus overlooking the dynamic nature of the financial market. In this study, a semiparametric model is proposed that combines non-parametrically estimated copulas with parametrically estimated marginals to allow all parameters to dynamically evolve over time. A novel framework was developed that integrates time-varying dependence modeling with flexible empirical beta copula structures. Marginal distributions were modeled using the Skewed Generalized T family. This effectively captures asymmetry and heavy tails and makes the model suitable for predictive inferences in real world scenarios. Furthermore, the model was applied to rolling windows of financial returns from the USA, India and Hong Kong economies to understand the influence of dynamic market conditions. The approach addresses the limitations of models that rely on parametric assumptions. By accounting for asymmetry, heavy tails, and cross-correlated asset prices, the proposed method offers a robust solution for optimizing diverse portfolios in an interconnected financial market. Through adaptive modeling, it allows for better management of risk and return across varying economic conditions, leading to more efficient asset allocation and improved portfolio performance. ...

April 16, 2025 · 2 min · Research Team

Efficient Asymmetric Causality Tests

Efficient Asymmetric Causality Tests ArXiv ID: 2408.03137 “View on arXiv” Authors: Unknown Abstract Asymmetric causality tests are increasingly gaining popularity in different scientific fields. This approach corresponds better to reality since logical reasons behind asymmetric behavior exist and need to be considered in empirical investigations. Hatemi-J (2012) introduced the asymmetric causality tests via partial cumulative sums for positive and negative components of the variables operating within the vector autoregressive (VAR) model. However, since the residuals across the equations in the VAR model are not independent, the ordinary least squares method for estimating the parameters is not efficient. Additionally, asymmetric causality tests mean having different causal parameters (i.e., for positive or negative components), thus, it is crucial to assess not only if these causal parameters are individually statistically significant, but also if their difference is statistically significant. Consequently, tests of difference between estimated causal parameters should explicitly be conducted, which are neglected in the existing literature. The purpose of the current paper is to deal with these issues explicitly. An application is provided, and ten different hypotheses pertinent to the asymmetric causal interaction between two largest financial markets worldwide are efficiently tested within a multivariate setting. ...

August 6, 2024 · 2 min · Research Team

Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models

Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models ArXiv ID: 2305.06704 “View on arXiv” Authors: Unknown Abstract In multivariate time series systems, key insights can be obtained by discovering lead-lag relationships inherent in the data, which refer to the dependence between two time series shifted in time relative to one another, and which can be leveraged for the purposes of control, forecasting or clustering. We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models. Within our framework, the envisioned pipeline takes as input a set of time series, and creates an enlarged universe of extracted subsequence time series from each input time series, via a sliding window approach. This is then followed by an application of various clustering techniques, (such as k-means++ and spectral clustering), employing a variety of pairwise similarity measures, including nonlinear ones. Once the clusters have been extracted, lead-lag estimates across clusters are robustly aggregated to enhance the identification of the consistent relationships in the original universe. We establish connections to the multireference alignment problem for both the homogeneous and heterogeneous settings. Since multivariate time series are ubiquitous in a wide range of domains, we demonstrate that our method is not only able to robustly detect lead-lag relationships in financial markets, but can also yield insightful results when applied to an environmental data set. ...

May 11, 2023 · 2 min · Research Team