false

Diffolio: A Diffusion Model for Multivariate Probabilistic Financial Time-Series Forecasting and Portfolio Construction

Diffolio: A Diffusion Model for Multivariate Probabilistic Financial Time-Series Forecasting and Portfolio Construction ArXiv ID: 2511.07014 “View on arXiv” Authors: So-Yoon Cho, Jin-Young Kim, Kayoung Ban, Hyeng Keun Koo, Hyun-Gyoon Kim Abstract Probabilistic forecasting is crucial in multivariate financial time-series for constructing efficient portfolios that account for complex cross-sectional dependencies. In this paper, we propose Diffolio, a diffusion model designed for multivariate financial time-series forecasting and portfolio construction. Diffolio employs a denoising network with a hierarchical attention architecture, comprising both asset-level and market-level layers. Furthermore, to better reflect cross-sectional correlations, we introduce a correlation-guided regularizer informed by a stable estimate of the target correlation matrix. This structure effectively extracts salient features not only from historical returns but also from asset-specific and systematic covariates, significantly enhancing the performance of forecasts and portfolios. Experimental results on the daily excess returns of 12 industry portfolios show that Diffolio outperforms various probabilistic forecasting baselines in multivariate forecasting accuracy and portfolio performance. Moreover, in portfolio experiments, portfolios constructed from Diffolio’s forecasts show consistently robust performance, thereby outperforming those from benchmarks by achieving higher Sharpe ratios for the mean-variance tangency portfolio and higher certainty equivalents for the growth-optimal portfolio. These results demonstrate the superiority of our proposed Diffolio in terms of not only statistical accuracy but also economic significance. ...

November 10, 2025 · 2 min · Research Team

Investment Portfolio Optimization Based on Modern Portfolio Theory and Deep Learning Models

Investment Portfolio Optimization Based on Modern Portfolio Theory and Deep Learning Models ArXiv ID: 2508.14999 “View on arXiv” Authors: Maciej Wysocki, Paweł Sakowski Abstract This paper investigates an important problem of an appropriate variance-covariance matrix estimation in the Modern Portfolio Theory. We propose a novel framework for variancecovariance matrix estimation for purposes of the portfolio optimization, which is based on deep learning models. We employ the long short-term memory (LSTM) recurrent neural networks (RNN) along with two probabilistic deep learning models: DeepVAR and GPVAR to the task of one-day ahead multivariate forecasting. We then use these forecasts to optimize portfolios of stocks and cryptocurrencies. Our analysis presents results across different combinations of observation windows and rebalancing periods to compare performances of classical and deep learning variance-covariance estimation methods. The conclusions of the study are that although the strategies (portfolios) performance differed significantly between different combinations of parameters, generally the best results in terms of the information ratio and annualized returns are obtained using the LSTM-RNN models. Moreover, longer observation windows translate into better performance of the deep learning models indicating that these methods require longer windows to be able to efficiently capture the long-term dependencies of the variance-covariance matrix structure. Strategies with less frequent rebalancing typically perform better than these with the shortest rebalancing windows across all considered methods. ...

August 20, 2025 · 2 min · Research Team

Transformer Based Time-Series Forecasting for Stock

Transformer Based Time-Series Forecasting for Stock ArXiv ID: 2502.09625 “View on arXiv” Authors: Unknown Abstract To the naked eye, stock prices are considered chaotic, dynamic, and unpredictable. Indeed, it is one of the most difficult forecasting tasks that hundreds of millions of retail traders and professional traders around the world try to do every second even before the market opens. With recent advances in the development of machine learning and the amount of data the market generated over years, applying machine learning techniques such as deep learning neural networks is unavoidable. In this work, we modeled the task as a multivariate forecasting problem, instead of a naive autoregression problem. The multivariate analysis is done using the attention mechanism via applying a mutated version of the Transformer, “Stockformer”, which we created. ...

January 29, 2025 · 2 min · Research Team