false

Core-Periphery Dynamics in Market-Conditioned Financial Networks: A Conditional P-Threshold Mutual Information Approach

Core-Periphery Dynamics in Market-Conditioned Financial Networks: A Conditional P-Threshold Mutual Information Approach ArXiv ID: 2601.00395 “View on arXiv” Authors: Kundan Mukhia, Imran Ansari, S R Luwang, Md Nurujjaman Abstract This study investigates how financial market structure reorganizes during the COVID-19 crash using a conditional p-threshold mutual information (MI) based Minimum Spanning Tree (MST) framework. We analyze nonlinear dependencies among the largest stocks from four diverse QUAD countries: the US, Japan, Australia, and India. Crashes are identified using the Hellinger distance and Hilbert spectrum; a crash occurs when HD = mu_H + 2*sigma_H, segmenting data into pre-crash, crash, and post-crash periods. Conditional p-threshold MI filters out common market effects and applies permutation-based significance testing. Resulting validated dependencies are used to construct MST networks for comparison across periods. Networks become more integrated during the crash, with shorter path lengths, higher centrality, and lower algebraic connectivity, indicating fragility. Core-periphery structure declines, with increased periphery vulnerability, and disassortative mixing facilitates shock transmission. Post-crash networks show only partial recovery. Aftershock analysis using the Gutenberg-Richter law indicates higher relative frequency of large volatility events following the crash. Results are consistent across all markets, highlighting the conditional p-threshold MI framework for capturing nonlinear interdependencies and systemic vulnerability. ...

January 1, 2026 · 2 min · Research Team

Modeling Bank Systemic Risk of Emerging Markets under Geopolitical Shocks: Empirical Evidence from BRICS Countries

Modeling Bank Systemic Risk of Emerging Markets under Geopolitical Shocks: Empirical Evidence from BRICS Countries ArXiv ID: 2512.20515 “View on arXiv” Authors: Haibo Wang Abstract The growing economic influence of the BRICS nations requires risk models that capture complex, long-term dynamics. This paper introduces the Bank Risk Interlinkage with Dynamic Graph and Event Simulations (BRIDGES) framework, which analyzes systemic risk based on the level of information complexity (zero-order, first-order, and second-order). BRIDGES utilizes the Dynamic Time Warping (DTW) distance to construct a dynamic network for 551 BRICS banks based on their strategic similarity, using zero-order information such as annual balance sheet data from 2008 to 2024. It then employs first-order information, including trends in risk ratios, to detect shifts in banks’ behavior. A Temporal Graph Neural Network (TGNN), as the core of BRIDGES, is deployed to learn network evolutions and detect second-order information, such as anomalous changes in the structural relationships of the bank network. To measure the impact of anomalous changes on network stability, BRIDGES performs Agent-Based Model (ABM) simulations to assess the banking system’s resilience to internal financial failure and external geopolitical shocks at the individual country level and across BRICS nations. Simulation results show that the failure of the largest institutions causes more systemic damage than the failure of the financially vulnerable or dynamically anomalous ones, driven by powerful panic effects. Compared to this “too big to fail” scenario, a geopolitical shock with correlated country-wide propagation causes more destructive systemic damage, leading to a near-total systemic collapse. It suggests that the primary threats to BRICS financial stability are second-order panic and large-scale geopolitical shocks, which traditional risk analysis models might not detect. ...

December 23, 2025 · 3 min · Research Team

Needles in a haystack: using forensic network science to uncover insider trading

Needles in a haystack: using forensic network science to uncover insider trading ArXiv ID: 2512.18918 “View on arXiv” Authors: Gian Jaeger, Wang Ngai Yeung, Renaud Lambiotte Abstract Although the automation and digitisation of anti-financial crime investigation has made significant progress in recent years, detecting insider trading remains a unique challenge, partly due to the limited availability of labelled data. To address this challenge, we propose using a data-driven networks approach that flags groups of corporate insiders who report coordinated transactions that are indicative of insider trading. Specifically, we leverage data on 2.9 million trades reported to the U.S. Securities and Exchange Commission (SEC) by company insiders (C-suite executives, board members and major shareholders) between 2014 and 2024. Our proposed algorithm constructs weighted edges between insiders based on the temporal similarity of their trades over the 10-year timeframe. Within this network we then uncover trends that indicate insider trading by focusing on central nodes and anomalous subgraphs. To highlight the validity of our approach we evaluate our findings with reference to two null models, generated by running our algorithm on synthetic empirically calibrated and shuffled datasets. The results indicate that our approach can be used to detect pairs or clusters of insiders whose behaviour suggests insider trading and/or market manipulation. ...

December 21, 2025 · 2 min · Research Team

Dependency Network-Based Portfolio Design with Forecasting and VaR Constraints

Dependency Network-Based Portfolio Design with Forecasting and VaR Constraints ArXiv ID: 2507.20039 “View on arXiv” Authors: Zihan Lin, Haojie Liu, Randall R. Rojas Abstract This study proposes a novel portfolio optimization framework that integrates statistical social network analysis with time series forecasting and risk management. Using daily stock data from the S&P 500 (2020-2024), we construct dependency networks via Vector Autoregression (VAR) and Forecast Error Variance Decomposition (FEVD), transforming influence relationships into a cost-based network. Specifically, FEVD breaks down the VAR’s forecast error variance to quantify how much each stock’s shocks contribute to another’s uncertainty information we invert to form influence-based edge weights in our network. By applying the Minimum Spanning Tree (MST) algorithm, we extract the core inter-stock structure and identify central stocks through degree centrality. A dynamic portfolio is constructed using the top-ranked stocks, with capital allocated based on Value at Risk (VaR). To refine stock selection, we incorporate forecasts from ARIMA and Neural Network Autoregressive (NNAR) models. Trading simulations over a one-year period demonstrate that the MST-based strategies outperform a buy-and-hold benchmark, with the tuned NNAR-enhanced strategy achieving a 63.74% return versus 18.00% for the benchmark. Our results highlight the potential of combining network structures, predictive modeling, and risk metrics to improve adaptive financial decision-making. ...

July 26, 2025 · 2 min · Research Team

Optimising cryptocurrency portfolios through stable clustering of price correlation networks

Optimising cryptocurrency portfolios through stable clustering of price correlation networks ArXiv ID: 2505.24831 “View on arXiv” Authors: Ruixue Jing, Ryota Kobayashi, Luis Enrique Correa Rocha Abstract The emerging cryptocurrency market presents unique challenges for investment due to its unregulated nature and inherent volatility. However, collective price movements can be explored to maximise profits with minimal risk using investment portfolios. In this paper, we develop a technical framework that utilises historical data on daily closing prices and integrates network analysis, price forecasting, and portfolio theory to identify cryptocurrencies for building profitable portfolios under uncertainty. Our method utilises the Louvain network community algorithm and consensus clustering to detect robust and temporally stable clusters of highly correlated cryptocurrencies, from which the chosen cryptocurrencies are selected. A price prediction step using the ARIMA model guarantees that the portfolio performs well for up to 14 days in the investment horizon. Empirical analysis over a 5-year period shows that despite the high volatility in the crypto market, hidden price patterns can be effectively utilised to generate consistently profitable, time-agnostic cryptocurrency portfolios. ...

May 30, 2025 · 2 min · Research Team

Reproducing the first and second moment of empirical degree distributions

Reproducing the first and second moment of empirical degree distributions ArXiv ID: 2505.10373 “View on arXiv” Authors: Mattia Marzi, Francesca Giuffrida, Diego Garlaschelli, Tiziano Squartini Abstract The study of probabilistic models for the analysis of complex networks represents a flourishing research field. Among the former, Exponential Random Graphs (ERGs) have gained increasing attention over the years. So far, only linear ERGs have been extensively employed to gain insight into the structural organisation of real-world complex networks. None, however, is capable of accounting for the variance of the empirical degree distribution. To this aim, non-linear ERGs must be considered. After showing that the usual mean-field approximation forces the degree-corrected version of the two-star model to degenerate, we define a fitness-induced variant of it. Such a `softened’ model is capable of reproducing the sample variance, while retaining the explanatory power of its linear counterpart, within a purely canonical framework. ...

May 15, 2025 · 2 min · Research Team

A Full-History Network Dataset for BTC Asset Decentralization Profiling

A Full-History Network Dataset for BTC Asset Decentralization Profiling ArXiv ID: 2411.13603 “View on arXiv” Authors: Unknown Abstract Since its advent in 2009, Bitcoin (BTC) has garnered increasing attention from both academia and industry. However, due to the massive transaction volume, no systematic study has quantitatively measured the asset decentralization degree specifically from a network perspective. In this paper, by conducting a thorough analysis of the BTC transaction network, we first address the significant gap in the availability of full-history BTC graph and network property dataset, which spans over 15 years from the genesis block (1st March, 2009) to the 845651-th block (29, May 2024). We then present the first systematic investigation to profile BTC’s asset decentralization and design several decentralization degrees for quantification. Through extensive experiments, we emphasize the significant role of network properties and our network-based decentralization degree in enhancing Bitcoin analysis. Our findings demonstrate the importance of our comprehensive dataset and analysis in advancing research on Bitcoin’s transaction dynamics and decentralization, providing valuable insights into the network’s structure and its implications. ...

November 19, 2024 · 2 min · Research Team

A Dynamic Spatiotemporal and Network ARCH Model with Common Factors

A Dynamic Spatiotemporal and Network ARCH Model with Common Factors ArXiv ID: 2410.16526 “View on arXiv” Authors: Unknown Abstract We introduce a dynamic spatiotemporal volatility model that extends traditional approaches by incorporating spatial, temporal, and spatiotemporal spillover effects, along with volatility-specific observed and latent factors. The model offers a more general network interpretation, making it applicable for studying various types of network spillovers. The primary innovation lies in incorporating volatility-specific latent factors into the dynamic spatiotemporal volatility model. Using Bayesian estimation via the Markov Chain Monte Carlo (MCMC) method, the model offers a robust framework for analyzing the spatial, temporal, and spatiotemporal effects of a log-squared outcome variable on its volatility. We recommend using the deviance information criterion (DIC) and a regularized Bayesian MCMC method to select the number of relevant factors in the model. The model’s flexibility is demonstrated through two applications: a spatiotemporal model applied to the U.S. housing market and another applied to financial stock market networks, both highlighting the model’s ability to capture varying degrees of interconnectedness. In both applications, we find strong spatial/network interactions with relatively stronger spillover effects in the stock market. ...

October 21, 2024 · 2 min · Research Team

Dynamical analysis of financial stocks network: improving forecasting using network properties

Dynamical analysis of financial stocks network: improving forecasting using network properties ArXiv ID: 2408.11759 “View on arXiv” Authors: Unknown Abstract Applying a network analysis to stock return correlations, we study the dynamical properties of the network and how they correlate with the market return, finding meaningful variables that partially capture the complex dynamical processes of stock interactions and the market structure. We then use the individual properties of stocks within the network along with the global ones, to find correlations with the future returns of individual S&P 500 stocks. Applying these properties as input variables for forecasting, we find a 50% improvement on the R2score in the prediction of stock returns on long time scales (per year), and 3% on short time scales (2 days), relative to baseline models without network variables. ...

August 21, 2024 · 2 min · Research Team

Enhancing Startup Success Predictions in Venture Capital: A GraphRAG Augmented Multivariate Time Series Method

Enhancing Startup Success Predictions in Venture Capital: A GraphRAG Augmented Multivariate Time Series Method ArXiv ID: 2408.09420 “View on arXiv” Authors: Unknown Abstract In the Venture Capital (VC) industry, predicting the success of startups is challenging due to limited financial data and the need for subjective revenue forecasts. Previous methods based on time series analysis often fall short as they fail to incorporate crucial inter-company relationships such as competition and collaboration. To fill the gap, this paper aims to introduce a novel approach using GraphRAG augmented time series model. With GraphRAG, time series predictive methods are enhanced by integrating these vital relationships into the analysis framework, allowing for a more dynamic understanding of the startup ecosystem in venture capital. Our experimental results demonstrate that our model significantly outperforms previous models in startup success predictions. ...

August 18, 2024 · 2 min · Research Team