false

Research on Optimal Portfolio Based on Multifractal Features

Research on Optimal Portfolio Based on Multifractal Features ArXiv ID: 2411.15712 “View on arXiv” Authors: Unknown Abstract Providing optimal portfolio selection for investors has always been one of the hot topics in academia. In view of the traditional portfolio model could not adapt to the actual capital market and can provide erroneous results. This paper innovatively constructs a mean-detrended cross-correlation portfolio model (M-DCCP model), This model is designed to embed detrended cross-correlation between different simultaneously recorded time series in the presence of nonstationary into the reward-risk criterion. We illustrate the model’s effectiveness by selected five composite indexes (SSE 50, CSI 300, SSE 500, CSI 1000 and CSI 2000) in China A-share market. The empirical results show that compared with traditional mean-variance portfolio model (M-VP model), the M-DCCP model is more conducive for investors to construct optimal portfolios under the different fluctuation exponent preference and time scales preference, so as to improve portfolio’s performance. ...

November 24, 2024 · 2 min · Research Team

Causal Discovery in Financial Markets: A Framework for Nonstationary Time-Series Data

Causal Discovery in Financial Markets: A Framework for Nonstationary Time-Series Data ArXiv ID: 2312.17375 “View on arXiv” Authors: Unknown Abstract This paper introduces a new causal structure learning method for nonstationary time series data, a common data type found in fields such as finance, economics, healthcare, and environmental science. Our work builds upon the constraint-based causal discovery from nonstationary data algorithm (CD-NOD). We introduce a refined version (CD-NOTS) which is designed specifically to account for lagged dependencies in time series data. We compare the performance of different algorithmic choices, such as the type of conditional independence test and the significance level, to help select the best hyperparameters given various scenarios of sample size, problem dimensionality, and availability of computational resources. Using the results from the simulated data, we apply CD-NOTS to a broad range of real-world financial applications in order to identify causal connections among nonstationary time series data, thereby illustrating applications in factor-based investing, portfolio diversification, and comprehension of market dynamics. ...

December 28, 2023 · 2 min · Research Team