false

MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing

MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing ArXiv ID: 2409.06724 “View on arXiv” Authors: Unknown Abstract We explore the performance of various artificial neural network architectures, including a multilayer perceptron (MLP), Kolmogorov-Arnold network (KAN), LSTM-GRU hybrid recursive neural network (RNN) models, and a time-delay neural network (TDNN) for pricing European call options. In this study, we attempt to leverage the ability of supervised learning methods, such as ANNs, KANs, and gradient-boosted decision trees, to approximate complex multivariate functions in order to calibrate option prices based on past market data. The motivation for using ANNs and KANs is the Universal Approximation Theorem and Kolmogorov-Arnold Representation Theorem, respectively. Specifically, we use S&P 500 (SPX) and NASDAQ 100 (NDX) index options traded during 2015-2023 with times to maturity ranging from 15 days to over 4 years (OptionMetrics IvyDB US dataset). Black & Scholes’s (BS) PDE \cite{“Black1973”} model’s performance in pricing the same options compared to real data is used as a benchmark. This model relies on strong assumptions, and it has been observed and discussed in the literature that real data does not match its predictions. Supervised learning methods are widely used as an alternative for calibrating option prices due to some of the limitations of this model. In our experiments, the BS model underperforms compared to all of the others. Also, the best TDNN model outperforms the best MLP model on all error metrics. We implement a simple self-attention mechanism to enhance the RNN models, significantly improving their performance. The best-performing model overall is the LSTM-GRU hybrid RNN model with attention. Also, the KAN model outperforms the TDNN and MLP models. We analyze the performance of all models by ticker, moneyness category, and over/under/correctly-priced percentage. ...

August 26, 2024 · 3 min · Research Team

Stochastic Calculus for Option Pricing with Convex Duality, Logistic Model, and Numerical Examination

Stochastic Calculus for Option Pricing with Convex Duality, Logistic Model, and Numerical Examination ArXiv ID: 2408.05672 “View on arXiv” Authors: Unknown Abstract This thesis explores the historical progression and theoretical constructs of financial mathematics, with an in-depth exploration of Stochastic Calculus as showcased in the Binomial Asset Pricing Model and the Continuous-Time Models. A comprehensive survey of stochastic calculus principles applied to option pricing is offered, highlighting insights from Peter Carr and Lorenzo Torricelli’s ``Convex Duality in Continuous Option Pricing Models". This manuscript adopts techniques such as Monte-Carlo Simulation and machine learning algorithms to examine the propositions of Carr and Torricelli, drawing comparisons between the Logistic and Bachelier models. Additionally, it suggests directions for potential future research on option pricing methods. ...

August 11, 2024 · 2 min · Research Team

Neural Term Structure of Additive Process for Option Pricing

Neural Term Structure of Additive Process for Option Pricing ArXiv ID: 2408.01642 “View on arXiv” Authors: Unknown Abstract The additive process generalizes the Lévy process by relaxing its assumption of time-homogeneous increments and hence covers a larger family of stochastic processes. Recent research in option pricing shows that modeling the underlying log price with an additive process has advantages in easier construction of the risk-neural measure, an explicit option pricing formula and characteristic function, and more flexibility to fit the implied volatility surface. Still, the challenge of calibrating an additive model arises from its time-dependent parameterization, for which one has to prescribe parametric functions for the term structure. For this, we propose the neural term structure model to utilize feedforward neural networks to represent the term structure, which alleviates the difficulty of designing parametric functions and thus attenuates the misspecification risk. Numerical studies with S&P 500 option data are conducted to evaluate the performance of the neural term structure. ...

August 3, 2024 · 2 min · Research Team

Calibrating the Heston model with deep differential networks

Calibrating the Heston model with deep differential networks ArXiv ID: 2407.15536 “View on arXiv” Authors: Unknown Abstract We propose a gradient-based deep learning framework to calibrate the Heston option pricing model (Heston, 1993). Our neural network, henceforth deep differential network (DDN), learns both the Heston pricing formula for plain-vanilla options and the partial derivatives with respect to the model parameters. The price sensitivities estimated by the DDN are not subject to the numerical issues that can be encountered in computing the gradient of the Heston pricing function. Thus, our network is an excellent pricing engine for fast gradient-based calibrations. Extensive tests on selected equity markets show that the DDN significantly outperforms non-differential feedforward neural networks in terms of calibration accuracy. In addition, it dramatically reduces the computational time with respect to global optimizers that do not use gradient information. ...

July 22, 2024 · 2 min · Research Team

Operator Deep Smoothing for Implied Volatility

Operator Deep Smoothing for Implied Volatility ArXiv ID: 2406.11520 “View on arXiv” Authors: Unknown Abstract We devise a novel method for nowcasting implied volatility based on neural operators. Better known as implied volatility smoothing in the financial industry, nowcasting of implied volatility means constructing a smooth surface that is consistent with the prices presently observed on a given option market. Option price data arises highly dynamically in ever-changing spatial configurations, which poses a major limitation to foundational machine learning approaches using classical neural networks. While large models in language and image processing deliver breakthrough results on vast corpora of raw data, in financial engineering the generalization from big historical datasets has been hindered by the need for considerable data pre-processing. In particular, implied volatility smoothing has remained an instance-by-instance, hands-on process both for neural network-based and traditional parametric strategies. Our general operator deep smoothing approach, instead, directly maps observed data to smoothed surfaces. We adapt the graph neural operator architecture to do so with high accuracy on ten years of raw intraday S&P 500 options data, using a single model instance. The trained operator adheres to critical no-arbitrage constraints and is robust with respect to subsampling of inputs (occurring in practice in the context of outlier removal). We provide extensive historical benchmarks and showcase the generalization capability of our approach in a comparison with classical neural networks and SVI, an industry standard parametrization for implied volatility. The operator deep smoothing approach thus opens up the use of neural networks on large historical datasets in financial engineering. ...

June 17, 2024 · 2 min · Research Team

Machine Learning Methods for Pricing Financial Derivatives

Machine Learning Methods for Pricing Financial Derivatives ArXiv ID: 2406.00459 “View on arXiv” Authors: Unknown Abstract Stochastic differential equation (SDE) models are the foundation for pricing and hedging financial derivatives. The drift and volatility functions in SDE models are typically chosen to be algebraic functions with a small number (less than 5) parameters which can be calibrated to market data. A more flexible approach is to use neural networks to model the drift and volatility functions, which provides more degrees-of-freedom to match observed market data. Training of models requires optimizing over an SDE, which is computationally challenging. For European options, we develop a fast stochastic gradient descent (SGD) algorithm for training the neural network-SDE model. Our SGD algorithm uses two independent SDE paths to obtain an unbiased estimate of the direction of steepest descent. For American options, we optimize over the corresponding Kolmogorov partial differential equation (PDE). The neural network appears as coefficient functions in the PDE. Models are trained on large datasets (many contracts), requiring either large simulations (many Monte Carlo samples for the stock price paths) or large numbers of PDEs (a PDE must be solved for each contract). Numerical results are presented for real market data including S&P 500 index options, S&P 100 index options, and single-stock American options. The neural-network-based SDE models are compared against the Black-Scholes model, the Dupire’s local volatility model, and the Heston model. Models are evaluated in terms of how accurate they are at pricing out-of-sample financial derivatives, which is a core task in derivative pricing at financial institutions. ...

June 1, 2024 · 2 min · Research Team

Gaussian Recombining Split Tree

Gaussian Recombining Split Tree ArXiv ID: 2405.16333 “View on arXiv” Authors: Unknown Abstract Binomial trees are widely used in the financial sector for valuing securities with early exercise characteristics, such as American stock options. However, while effective in many scenarios, pricing options with CRR binomial trees are limited. Major limitations are volatility estimation, constant volatility assumption, subjectivity in parameter choices, and impracticality of instantaneous delta hedging. This paper presents a novel tree: Gaussian Recombining Split Tree (GRST), which is recombining and does not need log-normality or normality market assumption. GRST generates a discrete probability mass function of market data distribution, which approximates a Gaussian distribution with known parameters at any chosen time interval. GRST Mixture builds upon the GRST concept while being flexible to fit a large class of market distributions and when given a 1-D time series data and moments of distributions at each time interval, fits a Gaussian mixture with the same mixture component probabilities applied at each time interval. Gaussian Recombining Split Tre Mixture comprises several GRST tied using Gaussian mixture component probabilities at the first node. Our extensive empirical analysis shows that the option prices from the GRST align closely with the market. ...

May 25, 2024 · 2 min · Research Team

Neural Network Learning of Black-Scholes Equation for Option Pricing

Neural Network Learning of Black-Scholes Equation for Option Pricing ArXiv ID: 2405.05780 “View on arXiv” Authors: Unknown Abstract One of the most discussed problems in the financial world is stock option pricing. The Black-Scholes Equation is a Parabolic Partial Differential Equation which provides an option pricing model. The present work proposes an approach based on Neural Networks to solve the Black-Scholes Equations. Real-world data from the stock options market were used as the initial boundary to solve the Black-Scholes Equation. In particular, times series of call options prices of Brazilian companies Petrobras and Vale were employed. The results indicate that the network can learn to solve the Black-Sholes Equation for a specific real-world stock options time series. The experimental results showed that the Neural network option pricing based on the Black-Sholes Equation solution can reach an option pricing forecasting more accurate than the traditional Black-Sholes analytical solutions. The experimental results making it possible to use this methodology to make short-term call option price forecasts in options markets. ...

May 9, 2024 · 2 min · Research Team

Fourier-Laplace transforms in polynomial Ornstein-Uhlenbeck volatility models

Fourier-Laplace transforms in polynomial Ornstein-Uhlenbeck volatility models ArXiv ID: 2405.02170 “View on arXiv” Authors: Unknown Abstract We consider the Fourier-Laplace transforms of a broad class of polynomial Ornstein-Uhlenbeck (OU) volatility models, including the well-known Stein-Stein, Schöbel-Zhu, one-factor Bergomi, and the recently introduced Quintic OU models motivated by the SPX-VIX joint calibration problem. We show the connection between the joint Fourier-Laplace functional of the log-price and the integrated variance, and the solution of an infinite dimensional Riccati equation. Next, under some non-vanishing conditions of the Fourier-Laplace transforms, we establish an existence result for such Riccati equation and we provide a discretized approximation of the joint characteristic functional that is exponentially entire. On the practical side, we develop a numerical scheme to solve the stiff infinite dimensional Riccati equations and demonstrate the efficiency and accuracy of the scheme for pricing SPX options and volatility swaps using Fourier and Laplace inversions, with specific examples of the Quintic OU and the one-factor Bergomi models and their calibration to real market data. ...

May 3, 2024 · 2 min · Research Team

Beyond the Bid-Ask: Strategic Insights into Spread Prediction and the Global Mid-Price Phenomenon

Beyond the Bid-Ask: Strategic Insights into Spread Prediction and the Global Mid-Price Phenomenon ArXiv ID: 2404.11722 “View on arXiv” Authors: Unknown Abstract This research extends the conventional concepts of the bid–ask spread (BAS) and mid-price to include the total market order book bid–ask spread (TMOBBAS) and the global mid-price (GMP). Using high-frequency trading data, we investigate these new constructs, finding that they have heavy tails and significant deviations from normality in the distributions of their log returns, which are confirmed by three different methods. We shift from a static to a dynamic analysis, employing the ARMA(1,1)-GARCH(1,1) model to capture the temporal dependencies in the return time-series, with the normal inverse Gaussian distribution used to capture the heavy tails of the returns. We apply an option pricing model to address the risks associated with the low liquidity indicated by the TMOBBAS and GMP. Additionally, we employ the Rachev ratio to evaluate the risk–return performance at various depths of the limit order book and examine tail risk interdependencies across spread levels. This study provides insights into the dynamics of financial markets, offering tools for trading strategies and systemic risk management. ...

April 17, 2024 · 2 min · Research Team