false

Pricing American Parisian Options under General Time-Inhomogeneous Markov Models

Pricing American Parisian Options under General Time-Inhomogeneous Markov Models ArXiv ID: 2503.11053 “View on arXiv” Authors: Unknown Abstract This paper develops general approaches for pricing various types of American-style Parisian options (down-in/-out, perpetual/finite-maturity) with general payoff functions based on continuous-time Markov chain (CTMC) approximation under general 1D time-inhomogeneous Markov models. For the down-in types, by conditioning on the Parisian stopping time, we reduce the pricing problem to that of a series of vanilla American options with different maturities and their prices integrated with the distribution function of the Parisian stopping time yield the American Parisian down-in option price. This facilitates an efficient application of CTMC approximation to obtain the approximate option price by calculating the required quantities. For the perpetual down-in cases under time-homogeneous models, significant computational cost can be reduced. The down-out cases are more complicated, for which we use the state augmentation approach to record the excursion duration and then the approximate option price is obtained by solving a series of variational inequalities recursively with the Lemke’s pivoting method. We show the convergence of CTMC approximation for all the types of American Parisian options under general time-inhomogeneous Markov models, and the accuracy and efficiency of our algorithms are confirmed with extensive numerical experiments. ...

March 14, 2025 · 2 min · Research Team

Unsupervised learning-based calibration scheme for Rough Bergomi model

Unsupervised learning-based calibration scheme for Rough Bergomi model ArXiv ID: 2412.02135 “View on arXiv” Authors: Unknown Abstract Current deep learning-based calibration schemes for rough volatility models are based on the supervised learning framework, which can be costly due to a large amount of training data being generated. In this work, we propose a novel unsupervised learning-based scheme for the rough Bergomi (rBergomi) model which does not require accessing training data. The main idea is to use the backward stochastic differential equation (BSDE) derived in [“Bayer, Qiu and Yao, {“SIAM J. Financial Math.”}, 2022”] and simultaneously learn the BSDE solutions with the model parameters. We establish that the mean squares error between the option prices under the learned model parameters and the historical data is bounded by the loss function. Moreover, the loss can be made arbitrarily small under suitable conditions on the fitting ability of the rBergomi model to the market and the universal approximation capability of neural networks. Numerical experiments for both simulated and historical data confirm the efficiency of scheme. ...

December 3, 2024 · 2 min · Research Team

Probabilistic Predictions of Option Prices Using Multiple Sources of Data

Probabilistic Predictions of Option Prices Using Multiple Sources of Data ArXiv ID: 2412.00658 “View on arXiv” Authors: Unknown Abstract A new modular approximate Bayesian inferential framework is proposed that enables fast calculation of probabilistic predictions of future option prices. We exploit multiple information sources, including daily spot returns, high-frequency spot data and option prices. A benefit of this modular Bayesian approach is that it allows us to work with the theoretical option pricing model, without needing to specify an arbitrary statistical model that links the theoretical prices to their observed counterparts. We show that our approach produces accurate probabilistic predictions of option prices in realistic scenarios and, despite not explicitly modelling pricing errors, the method is shown to be robust to their presence. Predictive accuracy based on the Heston stochastic volatility model, with predictions produced via rapid real-time updates, is illustrated empirically for short-maturity options. ...

December 1, 2024 · 2 min · Research Team

Numerical analysis of American option pricing in a two-asset jump-diffusion model

Numerical analysis of American option pricing in a two-asset jump-diffusion model ArXiv ID: 2410.04745 “View on arXiv” Authors: Unknown Abstract This paper addresses an important gap in rigorous numerical treatments for pricing American options under correlated two-asset jump-diffusion models using the viscosity solution framework, with a particular focus on the Merton model. The pricing of these options is governed by complex two-dimensional (2-D) variational inequalities that incorporate cross-derivative terms and nonlocal integro-differential terms due to the presence of jumps. Existing numerical methods, primarily based on finite differences, often struggle with preserving monotonicity in the approximation of cross-derivatives, a key requirement for ensuring convergence to the viscosity solution. In addition, these methods face challenges in accurately discretizing 2-D jump integrals. We introduce a novel approach to effectively tackle the aforementioned variational inequalities while seamlessly handling cross-derivative terms and nonlocal integro-differential terms through an efficient and straightforward-to-implement monotone integration scheme. Within each timestep, our approach explicitly enforces the inequality constraint, resulting in a 2-D Partial Integro-Differential Equation (PIDE) to solve. Its solution is expressed as a 2-D convolution integral involving the Green’s function of the PIDE. We derive an infinite series representation of this Green’s function, where each term is non-negative and computable. This facilitates the numerical approximation of the PIDE solution through a monotone integration method. To enhance efficiency, we develop an implementation of this monotone scheme via FFTs, exploiting the Toeplitz matrix structure. The proposed method is proved to be both $\ell_{"\infty"} $-stable and consistent in the viscosity sense, ensuring its convergence to the viscosity solution of the variational inequality. Extensive numerical results validate the effectiveness and robustness of our approach. ...

October 7, 2024 · 3 min · Research Team

A pure dual approach for hedging Bermudan options

A pure dual approach for hedging Bermudan options ArXiv ID: 2404.18761 “View on arXiv” Authors: Unknown Abstract This paper develops a new dual approach to compute the hedging portfolio of a Bermudan option and its initial value. It gives a “purely dual” algorithm following the spirit of Rogers (2010) in the sense that it only relies on the dual pricing formula. The key is to rewrite the dual formula as an excess reward representation and to combine it with a strict convexification technique. The hedging strategy is then obtained by using a Monte Carlo method, solving backward a sequence of least square problems. We show convergence results for our algorithm and test it on many different Bermudan options. Beyond giving directly the hedging portfolio, the strength of the algorithm is to assess both the relevance of including financial instruments in the hedging portfolio and the effect of the rebalancing frequency. ...

April 29, 2024 · 2 min · Research Team

Semi-analytic pricing of American options in time-dependent jump-diffusion models with exponential jumps

Semi-analytic pricing of American options in time-dependent jump-diffusion models with exponential jumps ArXiv ID: 2308.08760 “View on arXiv” Authors: Unknown Abstract In this paper we propose a semi-analytic approach to pricing American options for time-dependent jump-diffusions models with exponential jumps The idea of the method is to further generalize our approach developed for pricing barrier, [“Itkin et al., 2021”], and American, [“Carr and Itkin, 2021; Itkin and Muravey, 2023”], options in various time-dependent one factor and even stochastic volatility models. Our approach i) allows arbitrary dependencies of the model parameters on time; ii) reduces solution of the pricing problem for American options to a simpler problem of solving a system of an algebraic nonlinear equation for the exercise boundary and a linear Fredholm-Volterra equation for the the option price; iii) the options Greeks solve a similar Fredholm-Volterra linear equation obtained by just differentiating Eq. (25) by the required parameter. Once done, the American option price is presented in close form. ...

August 17, 2023 · 2 min · Research Team

Option Market Making via Reinforcement Learning

Option Market Making via Reinforcement Learning ArXiv ID: 2307.01814 “View on arXiv” Authors: Unknown Abstract Market making of options with different maturities and strikes is a challenging problem due to its highly dimensional nature. In this paper, we propose a novel approach that combines a stochastic policy and reinforcement learning-inspired techniques to determine the optimal policy for posting bid-ask spreads for an options market maker who trades options with different maturities and strikes. ...

July 4, 2023 · 1 min · Research Team