Forecasting Liquidity Withdraw with Machine Learning Models
Forecasting Liquidity Withdraw with Machine Learning Models ArXiv ID: 2509.22985 “View on arXiv” Authors: Haochuan, Wang Abstract Liquidity withdrawal is a critical indicator of market fragility. In this project, I test a framework for forecasting liquidity withdrawal at the individual-stock level, ranging from less liquid stocks to highly liquid large-cap tickers, and evaluate the relative performance of competing model classes in predicting short-horizon order book stress. We introduce the Liquidity Withdrawal Index (LWI) – defined as the ratio of order cancellations to the sum of standing depth and new additions at the best quotes – as a bounded, interpretable measure of transient liquidity removal. Using Nasdaq market-by-order (MBO) data, we compare a spectrum of approaches: linear benchmarks (AR, HAR), and non-linear tree ensembles (XGBoost), across horizons ranging from 250,ms to 5,s. Beyond predictive accuracy, our results provide insights into order placement and cancellation dynamics, identify regimes where linear versus non-linear signals dominate, and highlight how early-warning indicators of liquidity withdrawal can inform both market surveillance and execution. ...