false

Forecasting Liquidity Withdraw with Machine Learning Models

Forecasting Liquidity Withdraw with Machine Learning Models ArXiv ID: 2509.22985 “View on arXiv” Authors: Haochuan, Wang Abstract Liquidity withdrawal is a critical indicator of market fragility. In this project, I test a framework for forecasting liquidity withdrawal at the individual-stock level, ranging from less liquid stocks to highly liquid large-cap tickers, and evaluate the relative performance of competing model classes in predicting short-horizon order book stress. We introduce the Liquidity Withdrawal Index (LWI) – defined as the ratio of order cancellations to the sum of standing depth and new additions at the best quotes – as a bounded, interpretable measure of transient liquidity removal. Using Nasdaq market-by-order (MBO) data, we compare a spectrum of approaches: linear benchmarks (AR, HAR), and non-linear tree ensembles (XGBoost), across horizons ranging from 250,ms to 5,s. Beyond predictive accuracy, our results provide insights into order placement and cancellation dynamics, identify regimes where linear versus non-linear signals dominate, and highlight how early-warning indicators of liquidity withdrawal can inform both market surveillance and execution. ...

September 26, 2025 · 2 min · Research Team

Neural Network-Based Algorithmic Trading Systems: Multi-Timeframe Analysis and High-Frequency Execution in Cryptocurrency Markets

Neural Network-Based Algorithmic Trading Systems: Multi-Timeframe Analysis and High-Frequency Execution in Cryptocurrency Markets ArXiv ID: 2508.02356 “View on arXiv” Authors: Wěi Zhāng Abstract This paper explores neural network-based approaches for algorithmic trading in cryptocurrency markets. Our approach combines multi-timeframe trend analysis with high-frequency direction prediction networks, achieving positive risk-adjusted returns through statistical modeling and systematic market exploitation. The system integrates diverse data sources including market data, on-chain metrics, and orderbook dynamics, translating these into unified buy/sell pressure signals. We demonstrate how machine learning models can effectively capture cross-timeframe relationships, enabling sub-second trading decisions with statistical confidence. ...

August 4, 2025 · 2 min · Research Team

The Market Maker's Dilemma: Navigating the Fill Probability vs. Post-Fill Returns Trade-Off

The Market Maker’s Dilemma: Navigating the Fill Probability vs. Post-Fill Returns Trade-Off ArXiv ID: 2502.18625 “View on arXiv” Authors: Unknown Abstract Using data from a live trading experiment on the Binance Bitcoin perpetual, we examine the effects of (i) basic order book mechanics and (ii) the persistence of price changes from immediate to short timescales, revealing the interplay between returns, queue sizes, and orders’ queue positions. We document a fundamental trade-off: a negative correlation between maker fill likelihood and post-fill returns. This dictates that viable maker strategies often require a contrarian approach, counter-trading the prevailing order book imbalance. These dynamics render commonly-cited strategies highly unprofitable, leading us to model `Reversals’: situations where a contrarian maker strategy at the touch proves effective. ...

February 25, 2025 · 2 min · Research Team

High-Frequency Stock Market Order Transitions during the US-China Trade War 2018: A Discrete-Time Markov Chain Analysis

High-Frequency Stock Market Order Transitions during the US-China Trade War 2018: A Discrete-Time Markov Chain Analysis ArXiv ID: 2405.05634 “View on arXiv” Authors: Unknown Abstract Statistical analysis of high-frequency stock market order transaction data is conducted to understand order transition dynamics. We employ a first-order time-homogeneous discrete-time Markov chain model to the sequence of orders of stocks belonging to six different sectors during the USA-China trade war of 2018. The Markov property of the order sequence is validated by the Chi-square test. We estimate the transition probability matrix of the sequence using maximum likelihood estimation. From the heat-map of these matrices, we found the presence of active participation by different types of traders during high volatility days. On such days, these traders place limit orders primarily with the intention of deleting the majority of them to influence the market. These findings are supported by high stationary distribution and low mean recurrence values of add and delete orders. Further, we found similar spectral gap and entropy rate values, which indicates that similar trading strategies are employed on both high and low volatility days during the trade war. Among all the sectors considered in this study, we observe that there is a recurring pattern of full execution orders in Finance & Banking sector. This shows that the banking stocks are resilient during the trade war. Hence, this study may be useful in understanding stock market order dynamics and devise trading strategies accordingly on high and low volatility days during extreme macroeconomic events. ...

May 9, 2024 · 2 min · Research Team

Equity auction dynamics: latent liquidity models with activity acceleration

Equity auction dynamics: latent liquidity models with activity acceleration ArXiv ID: 2401.06724 “View on arXiv” Authors: Unknown Abstract Equity auctions display several distinctive characteristics in contrast to continuous trading. As the auction time approaches, the rate of events accelerates causing a substantial liquidity buildup around the indicative price. This, in turn, results in a reduced price impact and decreased volatility of the indicative price. In this study, we adapt the latent/revealed order book framework to the specifics of equity auctions. We provide precise measurements of the model parameters, including order submissions, cancellations, and diffusion rates. Our setup allows us to describe the full dynamics of the average order book during closing auctions in Euronext Paris. These findings support the relevance of the latent liquidity framework in describing limit order book dynamics. Lastly, we analyze the factors contributing to a sub-diffusive indicative price and demonstrate the absence of indicative price predictability. ...

January 12, 2024 · 2 min · Research Team

A simulated electronic market with speculative behaviour and bubble formation

A simulated electronic market with speculative behaviour and bubble formation ArXiv ID: 2311.12247 “View on arXiv” Authors: Unknown Abstract This paper presents an agent based model of an electronic market with two types of trading agents. One type follows a mean reverting strategy and the other, the speculative trader, tracks the maximum realised return over recent trades. The speculators have a distribution of returns concentrated on negative returns, with a small fraction making profits. The market experiences an increased volatility and prices that greatly depart from the fundamental value of the asset. Our research provides synthetic datasets of the order book to study its dynamics under different levels of speculation ...

November 21, 2023 · 2 min · Research Team

Anomalous diffusion and price impact in the fluid-limit of an order book

Anomalous diffusion and price impact in the fluid-limit of an order book ArXiv ID: 2310.06079 “View on arXiv” Authors: Unknown Abstract We extend a Discrete Time Random Walk (DTRW) numerical scheme to simulate the anomalous diffusion of financial market orders in a simulated order book. Here using random walks with Sibuya waiting times to include a time-dependent stochastic forcing function with non-uniformly sampled times between order book events in the setting of fractional diffusion. This models the fluid limit of an order book by modelling the continuous arrival, cancellation and diffusion of orders in the presence of information shocks. We study the impulse response and stylised facts of orders undergoing anomalous diffusion for different forcing functions and model parameters. Concretely, we demonstrate the price impact for flash limit-orders and market orders and show how the numerical method generate kinks in the price impact. We use cubic spline interpolation to generate smoothed price impact curves. The work promotes the use of non-uniform sampling in the presence of diffusive dynamics as the preferred simulation method. ...

October 9, 2023 · 2 min · Research Team

An Empirical Analysis on Financial Markets: Insights from the Application of Statistical Physics

An Empirical Analysis on Financial Markets: Insights from the Application of Statistical Physics ArXiv ID: 2308.14235 “View on arXiv” Authors: Unknown Abstract In this study, we introduce a physical model inspired by statistical physics for predicting price volatility and expected returns by leveraging Level 3 order book data. By drawing parallels between orders in the limit order book and particles in a physical system, we establish unique measures for the system’s kinetic energy and momentum as a way to comprehend and evaluate the state of limit order book. Our model goes beyond examining merely the top layers of the order book by introducing the concept of ‘active depth’, a computationally-efficient approach for identifying order book levels that have impact on price dynamics. We empirically demonstrate that our model outperforms the benchmarks of traditional approaches and machine learning algorithm. Our model provides a nuanced comprehension of market microstructure and produces more accurate forecasts on volatility and expected returns. By incorporating principles of statistical physics, this research offers valuable insights on understanding the behaviours of market participants and order book dynamics. ...

August 28, 2023 · 2 min · Research Team

Detecting Financial Market Manipulation with Statistical Physics Tools

Detecting Financial Market Manipulation with Statistical Physics Tools ArXiv ID: 2308.08683 “View on arXiv” Authors: Unknown Abstract We take inspiration from statistical physics to develop a novel conceptual framework for the analysis of financial markets. We model the order book dynamics as a motion of particles and define the momentum measure of the system as a way to summarise and assess the state of the market. Our approach proves useful in capturing salient financial market phenomena: in particular, it helps detect the market manipulation activities called spoofing and layering. We apply our method to identify pathological order book behaviours during the flash crash of the LUNA cryptocurrency, uncovering widespread instances of spoofing and layering in the market. Furthermore, we establish that our technique outperforms the conventional Z-score-based anomaly detection method in identifying market manipulations across both LUNA and Bitcoin cryptocurrency markets. ...

August 16, 2023 · 2 min · Research Team

Interpretable ML for High-Frequency Execution

Interpretable ML for High-Frequency Execution ArXiv ID: 2307.04863 “View on arXiv” Authors: Unknown Abstract Order placement tactics play a crucial role in high-frequency trading algorithms and their design is based on understanding the dynamics of the order book. Using high quality high-frequency data and a set of microstructural features, we exhibit strong state dependence properties of the fill probability function. We train a neural network to infer the fill probability function for a fixed horizon. Since we aim at providing a high-frequency execution framework, we use a simple architecture. A weighting method is applied to the loss function such that the model learns from censored data. By comparing numerical results obtained on both digital asset centralized exchanges (CEXs) and stock markets, we are able to analyze dissimilarities between feature importances of the fill probability of small tick crypto pairs and Euronext equities. The practical use of this model is illustrated with a fixed time horizon execution problem in which both the decision to post a limit order or to immediately execute and the optimal distance of placement are characterized. We discuss the importance of accurately estimating the clean-up cost that occurs in the case of a non-execution and we show it can be well approximated by a smooth function of market features. We finally assess the performance of our model with a backtesting approach that avoids the insertion of hypothetical orders and makes possible to test the order placement algorithm with orders that realistically impact the price formation process. ...

July 10, 2023 · 2 min · Research Team