false

Controllable Financial Market Generation with Diffusion Guided Meta Agent

Controllable Financial Market Generation with Diffusion Guided Meta Agent ArXiv ID: 2408.12991 “View on arXiv” Authors: Unknown Abstract Generative modeling has transformed many fields, such as language and visual modeling, while its application in financial markets remains under-explored. As the minimal unit within a financial market is an order, order-flow modeling represents a fundamental generative financial task. However, current approaches often yield unsatisfactory fidelity in generating order flow, and their generation lacks controllability, thereby limiting their practical applications. In this paper, we formulate the challenge of controllable financial market generation, and propose a Diffusion Guided Meta Agent (DigMA) model to address it. Specifically, we employ a conditional diffusion model to capture the dynamics of the market state represented by time-evolving distribution parameters of the mid-price return rate and the order arrival rate, and we define a meta agent with financial economic priors to generate orders from the corresponding distributions. Extensive experimental results show that DigMA achieves superior controllability and generation fidelity. Moreover, we validate its effectiveness as a generative environment for downstream high-frequency trading tasks and its computational efficiency. ...

August 23, 2024 · 2 min · Research Team

Discrete $q$-exponential limit order cancellation time distribution

Discrete $q$-exponential limit order cancellation time distribution ArXiv ID: 2306.00093 “View on arXiv” Authors: Unknown Abstract Modeling financial markets based on empirical data poses challenges in selecting the most appropriate models. Despite the abundance of empirical data available, researchers often face difficulties in identifying the best-fitting model. Long-range memory and self-similarity estimators, commonly used for this purpose, can yield inconsistent parameter values, as they are tailored to specific time series models. In our previous work, we explored order disbalance time series from the broader perspective of fractional L’{“e”}vy stable motion, revealing a stable anti-correlation in the financial market order flow. However, a more detailed analysis of empirical data indicates the need for a more specific order flow model that incorporates the power-law distribution of limit order cancellation times. When considering a series in event time, the limit order cancellation times follow a discrete probability mass function derived from the Tsallis q-exponential distribution. The combination of power-law distributions for limit order volumes and cancellation times introduces a novel approach to modeling order disbalance in the financial markets. Moreover, this proposed model has the potential to serve as an example for modeling opinion dynamics in social systems. By tailoring the model to incorporate the unique statistical properties of financial market data, we can improve the accuracy of our predictions and gain deeper insights into the dynamics of these complex systems. ...

May 31, 2023 · 2 min · Research Team