false

Deep reinforcement learning for optimal trading with partial information

Deep reinforcement learning for optimal trading with partial information ArXiv ID: 2511.00190 “View on arXiv” Authors: Andrea Macrì, Sebastian Jaimungal, Fabrizio Lillo Abstract Reinforcement Learning (RL) applied to financial problems has been the subject of a lively area of research. The use of RL for optimal trading strategies that exploit latent information in the market is, to the best of our knowledge, not widely tackled. In this paper we study an optimal trading problem, where a trading signal follows an Ornstein-Uhlenbeck process with regime-switching dynamics. We employ a blend of RL and Recurrent Neural Networks (RNN) in order to make the most at extracting underlying information from the trading signal with latent parameters. The latent parameters driving mean reversion, speed, and volatility are filtered from observations of the signal, and trading strategies are derived via RL. To address this problem, we propose three Deep Deterministic Policy Gradient (DDPG)-based algorithms that integrate Gated Recurrent Unit (GRU) networks to capture temporal dependencies in the signal. The first, a one -step approach (hid-DDPG), directly encodes hidden states from the GRU into the RL trader. The second and third are two-step methods: one (prob-DDPG) makes use of posterior regime probability estimates, while the other (reg-DDPG) relies on forecasts of the next signal value. Through extensive simulations with increasingly complex Markovian regime dynamics for the trading signal’s parameters, as well as an empirical application to equity pair trading, we find that prob-DDPG achieves superior cumulative rewards and exhibits more interpretable strategies. By contrast, reg-DDPG provides limited benefits, while hid-DDPG offers intermediate performance with less interpretable strategies. Our results show that the quality and structure of the information supplied to the agent are crucial: embedding probabilistic insights into latent regimes substantially improves both profitability and robustness of reinforcement learning-based trading strategies. ...

October 31, 2025 · 3 min · Research Team

Reinforcement Learning Pair Trading: A Dynamic Scaling approach

Reinforcement Learning Pair Trading: A Dynamic Scaling approach ArXiv ID: 2407.16103 “View on arXiv” Authors: Unknown Abstract Cryptocurrency is a cryptography-based digital asset with extremely volatile prices. Around USD 70 billion worth of cryptocurrency is traded daily on exchanges. Trading cryptocurrency is difficult due to the inherent volatility of the crypto market. This study investigates whether Reinforcement Learning (RL) can enhance decision-making in cryptocurrency algorithmic trading compared to traditional methods. In order to address this question, we combined reinforcement learning with a statistical arbitrage trading technique, pair trading, which exploits the price difference between statistically correlated assets. We constructed RL environments and trained RL agents to determine when and how to trade pairs of cryptocurrencies. We developed new reward shaping and observation/action spaces for reinforcement learning. We performed experiments with the developed reinforcement learner on pairs of BTC-GBP and BTC-EUR data separated by 1 min intervals (n=263,520). The traditional non-RL pair trading technique achieved an annualized profit of 8.33%, while the proposed RL-based pair trading technique achieved annualized profits from 9.94% to 31.53%, depending upon the RL learner. Our results show that RL can significantly outperform manual and traditional pair trading techniques when applied to volatile markets such as~cryptocurrencies. ...

July 23, 2024 · 2 min · Research Team

MTRGL:Effective Temporal Correlation Discerning through Multi-modal Temporal Relational Graph Learning

MTRGL:Effective Temporal Correlation Discerning through Multi-modal Temporal Relational Graph Learning ArXiv ID: 2401.14199 “View on arXiv” Authors: Unknown Abstract In this study, we explore the synergy of deep learning and financial market applications, focusing on pair trading. This market-neutral strategy is integral to quantitative finance and is apt for advanced deep-learning techniques. A pivotal challenge in pair trading is discerning temporal correlations among entities, necessitating the integration of diverse data modalities. Addressing this, we introduce a novel framework, Multi-modal Temporal Relation Graph Learning (MTRGL). MTRGL combines time series data and discrete features into a temporal graph and employs a memory-based temporal graph neural network. This approach reframes temporal correlation identification as a temporal graph link prediction task, which has shown empirical success. Our experiments on real-world datasets confirm the superior performance of MTRGL, emphasizing its promise in refining automated pair trading strategies. ...

January 25, 2024 · 2 min · Research Team

Copula-based deviation measure of cointegrated financial assets

Copula-based deviation measure of cointegrated financial assets ArXiv ID: 2312.02081 “View on arXiv” Authors: Unknown Abstract This study outlines a comprehensive methodology utilizing copulas to discern inconsistencies in the behavior exhibited by pairs of financial assets. It introduces a robust approach to establishing the interrelationship between the returns of these assets, exploring potential measures of dependence among the stochastic variables represented by these returns. Special emphasis is placed on scrutinizing the traditional measure of dependence, namely the correlation coefficient, delineating its limitations. Furthermore, the study articulates an alternative methodology that offers enhanced stability and informativeness in appraising the relationship between financial instrument returns. ...

December 4, 2023 · 2 min · Research Team