false

Statistics-Informed Parameterized Quantum Circuit via Maximum Entropy Principle for Data Science and Finance

Statistics-Informed Parameterized Quantum Circuit via Maximum Entropy Principle for Data Science and Finance ArXiv ID: 2406.01335 “View on arXiv” Authors: Unknown Abstract Quantum machine learning has demonstrated significant potential in solving practical problems, particularly in statistics-focused areas such as data science and finance. However, challenges remain in preparing and learning statistical models on a quantum processor due to issues with trainability and interpretability. In this letter, we utilize the maximum entropy principle to design a statistics-informed parameterized quantum circuit (SI-PQC) for efficiently preparing and training of quantum computational statistical models, including arbitrary distributions and their weighted mixtures. The SI-PQC features a static structure with trainable parameters, enabling in-depth optimized circuit compilation, exponential reductions in resource and time consumption, and improved trainability and interpretability for learning quantum states and classical model parameters simultaneously. As an efficient subroutine for preparing and learning in various quantum algorithms, the SI-PQC addresses the input bottleneck and facilitates the injection of prior knowledge. ...

June 3, 2024 · 2 min · Research Team

A novel approach for quantum financial simulation and quantum state preparation

A novel approach for quantum financial simulation and quantum state preparation ArXiv ID: 2308.01844 “View on arXiv” Authors: Unknown Abstract Quantum state preparation is vital in quantum computing and information processing. The ability to accurately and reliably prepare specific quantum states is essential for various applications. One of the promising applications of quantum computers is quantum simulation. This requires preparing a quantum state representing the system we are trying to simulate. This research introduces a novel simulation algorithm, the multi-Split-Steps Quantum Walk (multi-SSQW), designed to learn and load complicated probability distributions using parameterized quantum circuits (PQC) with a variational solver on classical simulators. The multi-SSQW algorithm is a modified version of the split-steps quantum walk, enhanced to incorporate a multi-agent decision-making process, rendering it suitable for modeling financial markets. The study provides theoretical descriptions and empirical investigations of the multi-SSQW algorithm to demonstrate its promising capabilities in probability distribution simulation and financial market modeling. Harnessing the advantages of quantum computation, the multi-SSQW models complex financial distributions and scenarios with high accuracy, providing valuable insights and mechanisms for financial analysis and decision-making. The multi-SSQW’s key benefits include its modeling flexibility, stable convergence, and instantaneous computation. These advantages underscore its rapid modeling and prediction potential in dynamic financial markets. ...

August 3, 2023 · 2 min · Research Team