false

A Privacy-Preserving Federated Framework with Hybrid Quantum-Enhanced Learning for Financial Fraud Detection

A Privacy-Preserving Federated Framework with Hybrid Quantum-Enhanced Learning for Financial Fraud Detection ArXiv ID: 2507.22908 “View on arXiv” Authors: Abhishek Sawaika, Swetang Krishna, Tushar Tomar, Durga Pritam Suggisetti, Aditi Lal, Tanmaya Shrivastav, Nouhaila Innan, Muhammad Shafique Abstract Rapid growth of digital transactions has led to a surge in fraudulent activities, challenging traditional detection methods in the financial sector. To tackle this problem, we introduce a specialised federated learning framework that uniquely combines a quantum-enhanced Long Short-Term Memory (LSTM) model with advanced privacy preserving techniques. By integrating quantum layers into the LSTM architecture, our approach adeptly captures complex cross-transactional patters, resulting in an approximate 5% performance improvement across key evaluation metrics compared to conventional models. Central to our framework is “FedRansel”, a novel method designed to defend against poisoning and inference attacks, thereby reducing model degradation and inference accuracy by 4-8%, compared to standard differential privacy mechanisms. This pseudo-centralised setup with a Quantum LSTM model, enhances fraud detection accuracy and reinforces the security and confidentiality of sensitive financial data. ...

July 15, 2025 · 2 min · Research Team