false

Maximizing Portfolio Predictability with Machine Learning

Maximizing Portfolio Predictability with Machine Learning ArXiv ID: 2311.01985 “View on arXiv” Authors: Unknown Abstract We construct the maximally predictable portfolio (MPP) of stocks using machine learning. Solving for the optimal constrained weights in the multi-asset MPP gives portfolios with a high monthly coefficient of determination, given the sample covariance matrix of predicted return errors from a machine learning model. Various models for the covariance matrix are tested. The MPPs of S&P 500 index constituents with estimated returns from Elastic Net, Random Forest, and Support Vector Regression models can outperform or underperform the index depending on the time period. Portfolios that take advantage of the high predictability of the MPP’s returns and employ a Kelly criterion style strategy consistently outperform the benchmark. ...

November 3, 2023 · 2 min · Research Team

A Comparative Study of Portfolio Optimization Methods for the Indian Stock Market

A Comparative Study of Portfolio Optimization Methods for the Indian Stock Market ArXiv ID: 2310.14748 “View on arXiv” Authors: Unknown Abstract This chapter presents a comparative study of the three portfolio optimization methods, MVP, HRP, and HERC, on the Indian stock market, particularly focusing on the stocks chosen from 15 sectors listed on the National Stock Exchange of India. The top stocks of each cluster are identified based on their free-float market capitalization from the report of the NSE published on July 1, 2022 (NSE Website). For each sector, three portfolios are designed on stock prices from July 1, 2019, to June 30, 2022, following three portfolio optimization approaches. The portfolios are tested over the period from July 1, 2022, to June 30, 2023. For the evaluation of the performances of the portfolios, three metrics are used. These three metrics are cumulative returns, annual volatilities, and Sharpe ratios. For each sector, the portfolios that yield the highest cumulative return, the lowest volatility, and the maximum Sharpe Ratio over the training and the test periods are identified. ...

October 23, 2023 · 2 min · Research Team

Topological Portfolio Selection and Optimization

Topological Portfolio Selection and Optimization ArXiv ID: 2310.14881 “View on arXiv” Authors: Unknown Abstract Modern portfolio optimization is centered around creating a low-risk portfolio with extensive asset diversification. Following the seminal work of Markowitz, optimal asset allocation can be computed using a constrained optimization model based on empirical covariance. However, covariance is typically estimated from historical lookback observations, and it is prone to noise and may inadequately represent future market behavior. As a remedy, information filtering networks from network science can be used to mitigate the noise in empirical covariance estimation, and therefore, can bring added value to the portfolio construction process. In this paper, we propose the use of the Statistically Robust Information Filtering Network (SR-IFN) which leverages the bootstrapping techniques to eliminate unnecessary edges during the network formation and enhances the network’s noise reduction capability further. We apply SR-IFN to index component stock pools in the US, UK, and China to assess its effectiveness. The SR-IFN network is partially disconnected with isolated nodes representing lesser-correlated assets, facilitating the selection of peripheral, diversified and higher-performing portfolios. Further optimization of performance can be achieved by inversely proportioning asset weights to their centrality based on the resultant network. ...

October 23, 2023 · 2 min · Research Team

Black-Litterman Asset Allocation under Hidden Truncation Distribution

Black-Litterman Asset Allocation under Hidden Truncation Distribution ArXiv ID: 2310.12333 “View on arXiv” Authors: Unknown Abstract In this paper, we study the Black-Litterman (BL) asset allocation model (Black and Litterman, 1990) under the hidden truncation skew-normal distribution (Arnold and Beaver, 2000). In particular, when returns are assumed to follow this skew normal distribution, we show that the posterior returns, after incorporating views, are also skew normal. By using Simaan three moments risk model (Simaan, 1993), we could then obtain the optimal portfolio. Empirical data show that the optimal portfolio obtained this way has less risk compared to an optimal portfolio of the classical BL model and that they become more negatively skewed as the expected returns of portfolios increase, which suggests that the investors trade a negative skewness for a higher expected return. We also observe a negative relation between portfolio volatility and portfolio skewness. This observation suggests that investors may be making a trade-off, opting for lower volatility in exchange for higher skewness, or vice versa. This trade-off indicates that stocks with significant price declines tend to exhibit increased volatility. ...

October 18, 2023 · 2 min · Research Team

Uses of Sub-sample Estimates to Reduce Errors in Stochastic Optimization Models

Uses of Sub-sample Estimates to Reduce Errors in Stochastic Optimization Models ArXiv ID: 2310.07052 “View on arXiv” Authors: Unknown Abstract Optimization software enables the solution of problems with millions of variables and associated parameters. These parameters are, however, often uncertain and represented with an analytical description of the parameter’s distribution or with some form of sample. With large numbers of such parameters, optimization of the resulting model is often driven by mis-specifications or extreme sample characteristics, resulting in solutions that are far from a true optimum. This paper describes how asymptotic convergence results may not be useful in large-scale problems and how the optimization of problems based on sub-sample estimates may achieve improved results over models using full-sample solution estimates. A motivating example and numerical results from a portfolio optimization problem demonstrate the potential improvement. A theoretical analysis also provides insight into the structure of problems where sub-sample optimization may be most beneficial. ...

October 10, 2023 · 2 min · Research Team

Navigating Uncertainty in ESG Investing

Navigating Uncertainty in ESG Investing ArXiv ID: 2310.02163 “View on arXiv” Authors: Unknown Abstract The widespread confusion among investors regarding Environmental, Social, and Governance (ESG) rankings assigned by rating agencies has underscored a critical issue in sustainable investing. To address this uncertainty, our research has devised methods that not only recognize this ambiguity but also offer tailored investment strategies for different investor profiles. By developing ESG ensemble strategies and integrating ESG scores into a Reinforcement Learning (RL) model, we aim to optimize portfolios that cater to both financial returns and ESG-focused outcomes. Additionally, by proposing the Double-Mean-Variance model, we classify three types of investors based on their risk preferences. We also introduce ESG-adjusted Capital Asset Pricing Models (CAPMs) to assess the performance of these optimized portfolios. Ultimately, our comprehensive approach provides investors with tools to navigate the inherent ambiguities of ESG ratings, facilitating more informed investment decisions. ...

October 3, 2023 · 2 min · Research Team

Covariance matrix filtering and portfolio optimisation: the Average Oracle vs Non-Linear Shrinkage and all the variants of DCC-NLS

Covariance matrix filtering and portfolio optimisation: the Average Oracle vs Non-Linear Shrinkage and all the variants of DCC-NLS ArXiv ID: 2309.17219 “View on arXiv” Authors: Unknown Abstract The Average Oracle, a simple and very fast covariance filtering method, is shown to yield superior Sharpe ratios than the current state-of-the-art (and complex) methods, Dynamic Conditional Covariance coupled to Non-Linear Shrinkage (DCC+NLS). We pit all the known variants of DCC+NLS (quadratic shrinkage, gross-leverage or turnover limitations, and factor-augmented NLS) against the Average Oracle in large-scale randomized experiments. We find generically that while some variants of DCC+NLS sometimes yield the lowest average realized volatility, albeit with a small improvement, their excessive gross leverage and investment concentration, and their 10-time larger turnover contribute to smaller average portfolio returns, which mechanically result in smaller realized Sharpe ratios than the Average Oracle. We also provide simple analytical arguments about the origin of the advantage of the Average Oracle over NLS in a changing world. ...

September 29, 2023 · 2 min · Research Team

Performance Evaluation of Equal-Weight Portfolio and Optimum Risk Portfolio on Indian Stocks

Performance Evaluation of Equal-Weight Portfolio and Optimum Risk Portfolio on Indian Stocks ArXiv ID: 2309.13696 “View on arXiv” Authors: Unknown Abstract Designing an optimum portfolio for allocating suitable weights to its constituent assets so that the return and risk associated with the portfolio are optimized is a computationally hard problem. The seminal work of Markowitz that attempted to solve the problem by estimating the future returns of the stocks is found to perform sub-optimally on real-world stock market data. This is because the estimation task becomes extremely challenging due to the stochastic and volatile nature of stock prices. This work illustrates three approaches to portfolio design minimizing the risk, optimizing the risk, and assigning equal weights to the stocks of a portfolio. Thirteen critical sectors listed on the National Stock Exchange (NSE) of India are first chosen. Three portfolios are designed following the above approaches choosing the top ten stocks from each sector based on their free-float market capitalization. The portfolios are designed using the historical prices of the stocks from Jan 1, 2017, to Dec 31, 2022. The portfolios are evaluated on the stock price data from Jan 1, 2022, to Dec 31, 2022. The performances of the portfolios are compared, and the portfolio yielding the higher return for each sector is identified. ...

September 24, 2023 · 2 min · Research Team

Doubly Robust Mean-CVaR Portfolio

Doubly Robust Mean-CVaR Portfolio ArXiv ID: 2309.11693 “View on arXiv” Authors: Unknown Abstract In this study, we address the challenge of portfolio optimization, a critical aspect of managing investment risks and maximizing returns. The mean-CVaR portfolio is considered a promising method due to today’s unstable financial market crises like the COVID-19 pandemic. It incorporates expected returns into the CVaR, which considers the expected value of losses exceeding a specified probability level. However, the instability associated with the input parameter changes and estimation errors can deteriorate portfolio performance. Therefore in this study, we propose a Doubly Robust mean-CVaR Portfolio refined approach to the mean-CVaR portfolio optimization. Our method can solve the instability problem to simultaneously optimize the multiple levels of CVaRs and define uncertainty sets for the mean parameter to perform robust optimization. Theoretically, the proposed method can be formulated as a second-order cone programming problem which is the same formulation as traditional mean-variance portfolio optimization. In addition, we derive an estimation error bound of the proposed method for the finite-sample case. Finally, experiments with benchmark and real market data show that our proposed method exhibits better performance compared to existing portfolio optimization strategies. ...

September 20, 2023 · 2 min · Research Team

A monotone numerical integration method for mean-variance portfolio optimization under jump-diffusion models

A monotone numerical integration method for mean-variance portfolio optimization under jump-diffusion models ArXiv ID: 2309.05977 “View on arXiv” Authors: Unknown Abstract We develop a efficient, easy-to-implement, and strictly monotone numerical integration method for Mean-Variance (MV) portfolio optimization in realistic contexts, which involve jump-diffusion dynamics of the underlying controlled processes, discrete rebalancing, and the application of investment constraints, namely no-bankruptcy and leverage. A crucial element of the MV portfolio optimization formulation over each rebalancing interval is a convolution integral, which involves a conditional density of the logarithm of the amount invested in the risky asset. Using a known closed-form expression for the Fourier transform of this density, we derive an infinite series representation for the conditional density where each term is strictly positive and explicitly computable. As a result, the convolution integral can be readily approximated through a monotone integration scheme, such as a composite quadrature rule typically available in most programming languages. The computational complexity of our method is an order of magnitude lower than that of existing monotone finite difference methods. To further enhance efficiency, we propose an implementation of the scheme via Fast Fourier Transforms, exploiting the Toeplitz matrix structure. The proposed monotone scheme is proven to be both $\ell_{"\infty"}$-stable and pointwise consistent, and we rigorously establish its pointwise convergence to the unique solution of the MV portfolio optimization problem. We also intuitively demonstrate that, as the rebalancing time interval approaches zero, the proposed scheme converges to a continuously observed impulse control formulation for MV optimization expressed as a Hamilton-Jacobi-Bellman Quasi-Variational Inequality. Numerical results show remarkable agreement with benchmark solutions obtained through finite differences and Monte Carlo simulation, underscoring the effectiveness of our approach. ...

September 12, 2023 · 3 min · Research Team