false

Scaling and shape of financial returns distributions modeled as conditionally independent random variables

Scaling and shape of financial returns distributions modeled as conditionally independent random variables ArXiv ID: 2504.20488 “View on arXiv” Authors: Hernán Larralde, Roberto Mota Navarro Abstract We show that assuming that the returns are independent when conditioned on the value of their variance (volatility), which itself varies in time randomly, then the distribution of returns is well described by the statistics of the sum of conditionally independent random variables. In particular, we show that the distribution of returns can be cast in a simple scaling form, and that its functional form is directly related to the distribution of the volatilities. This approach explains the presence of power-law tails in the returns as a direct consequence of the presence of a power law tail in the distribution of volatilities. It also provides the form of the distribution of Bitcoin returns, which behaves as a stretched exponential, as a consequence of the fact that the Bitcoin volatilities distribution is also closely described by a stretched exponential. We test our predictions with data from the S&P 500 index, Apple and Paramount stocks; and Bitcoin. ...

April 29, 2025 · 2 min · Research Team

Are there Dragon Kings in the Stock Market?

Are there Dragon Kings in the Stock Market? ArXiv ID: 2307.03693 “View on arXiv” Authors: Unknown Abstract We undertake a systematic study of historic market volatility spanning roughly five preceding decades. We focus specifically on the time series of realized volatility (RV) of the S&P500 index and its distribution function. As expected, the largest values of RV coincide with the largest economic upheavals of the period: Savings and Loan Crisis, Tech Bubble, Financial Crisis and Covid Pandemic. We address the question of whether these values belong to one of the three categories: Black Swans (BS), that is they lie on scale-free, power-law tails of the distribution; Dragon Kings (DK), defined as statistically significant upward deviations from BS; or Negative Dragons Kings (nDK), defined as statistically significant downward deviations from BS. In analyzing the tails of the distribution with RV > 40, we observe the appearance of “potential” DK which eventually terminate in an abrupt plunge to nDK. This phenomenon becomes more pronounced with the increase of the number of days over which the average RV is calculated – here from daily, n=1, to “monthly,” n=21. We fit the entire distribution with a modified Generalized Beta (mGB) distribution function, which terminates at a finite value of the variable but exhibits a long power-law stretch prior to that, as well as Generalized Beta Prime (GB2) distribution function, which has a power-law tail. We also fit the tails directly with a straight line on a log-log scale. In order to ascertain BS, DK or nDK behavior, all fits include their confidence intervals and p-values are evaluated for the data points to check if they can come from the respective distributions. ...

July 7, 2023 · 2 min · Research Team