false

SoK: Market Microstructure for Decentralized Prediction Markets (DePMs)

SoK: Market Microstructure for Decentralized Prediction Markets (DePMs) ArXiv ID: 2510.15612 “View on arXiv” Authors: Nahid Rahman, Joseph Al-Chami, Jeremy Clark Abstract Decentralized prediction markets (DePMs) allow open participation in event-based wagering without fully relying on centralized intermediaries. We review the history of DePMs which date back to 2011 and includes hundreds of proposals. Perhaps surprising, modern DePMs like Polymarket deviate materially from earlier designs like Truthcoin and Augur v1. We use our review to present a modular workflow comprising seven stages: underlying infrastructure, market topic, share structure and pricing, trading, market resolution, settlement, and archiving. For each module, we enumerate the design variants, analyzing trade-offs around decentralization, expressiveness, and manipulation resistance. We also identify open problems for researchers interested in this ecosystem. ...

October 17, 2025 · 2 min · Research Team

Toward Black Scholes for Prediction Markets: A Unified Kernel and Market Maker's Handbook

Toward Black Scholes for Prediction Markets: A Unified Kernel and Market Maker’s Handbook ArXiv ID: 2510.15205 “View on arXiv” Authors: Shaw Dalen Abstract Prediction markets, such as Polymarket, aggregate dispersed information into tradable probabilities, but they still lack a unifying stochastic kernel comparable to the one options gained from Black-Scholes. As these markets scale with institutional participation, exchange integrations, and higher volumes around elections and macro prints, market makers face belief volatility, jump, and cross-event risks without standardized tools for quoting or hedging. We propose such a foundation: a logit jump-diffusion with risk-neutral drift that treats the traded probability p_t as a Q-martingale and exposes belief volatility, jump intensity, and dependence as quotable risk factors. On top, we build a calibration pipeline that filters microstructure noise, separates diffusion from jumps using expectation-maximization, enforces the risk-neutral drift, and yields a stable belief-volatility surface. We then define a coherent derivative layer (variance, correlation, corridor, and first-passage instruments) analogous to volatility and correlation products in option markets. In controlled experiments on synthetic risk-neutral paths and real event data, the model reduces short-horizon belief-variance forecast error relative to diffusion-only and probability-space baselines, supporting both causal calibration and economic interpretability. Conceptually, the logit jump-diffusion kernel supplies an implied-volatility analogue for prediction markets: a tractable, tradable language for quoting, hedging, and transferring belief risk across venues such as Polymarket. ...

October 17, 2025 · 2 min · Research Team

Bootstrapping Liquidity in BTC-Denominated Prediction Markets

Bootstrapping Liquidity in BTC-Denominated Prediction Markets ArXiv ID: 2509.11990 “View on arXiv” Authors: Fedor Shabashev Abstract Prediction markets have gained adoption as on-chain mechanisms for aggregating information, with platforms such as Polymarket demonstrating demand for stablecoin-denominated markets. However, denominating in non-interest-bearing stablecoins introduces inefficiencies: participants face opportunity costs relative to the fiat risk-free rate, and Bitcoin holders in particular lose exposure to BTC appreciation when converting into stablecoins. This paper explores the case for prediction markets denominated in Bitcoin, treating BTC as a deflationary settlement asset analogous to gold under the classical gold standard. We analyse three methods of supplying liquidity to a newly created BTC-denominated prediction market: cross-market making against existing stablecoin venues, automated market making, and DeFi-based redirection of user trades. For each approach we evaluate execution mechanics, risks (slippage, exchange-rate risk, and liquidation risk), and capital efficiency. Our analysis shows that cross-market making provides the most user-friendly risk profile, though it requires active professional makers or platform-subsidised liquidity. DeFi redirection offers rapid bootstrapping and reuse of existing USDC liquidity, but exposes users to liquidation thresholds and exchange-rate volatility, reducing capital efficiency. Automated market making is simple to deploy but capital-inefficient and exposes liquidity providers to permanent loss. The results suggest that BTC-denominated prediction markets are feasible, but their success depends critically on the choice of liquidity provisioning mechanism and the trade-off between user safety and deployment convenience. ...

September 15, 2025 · 2 min · Research Team

Unravelling the Probabilistic Forest: Arbitrage in Prediction Markets

Unravelling the Probabilistic Forest: Arbitrage in Prediction Markets ArXiv ID: 2508.03474 “View on arXiv” Authors: Oriol Saguillo, Vahid Ghafouri, Lucianna Kiffer, Guillermo Suarez-Tangil Abstract Polymarket is a prediction market platform where users can speculate on future events by trading shares tied to specific outcomes, known as conditions. Each market is associated with a set of one or more such conditions. To ensure proper market resolution, the condition set must be exhaustive – collectively accounting for all possible outcomes – and mutually exclusive – only one condition may resolve as true. Thus, the collective prices of all related outcomes should be $1, representing a combined probability of 1 of any outcome. Despite this design, Polymarket exhibits cases where dependent assets are mispriced, allowing for purchasing (or selling) a certain outcome for less than (or more than) $1, guaranteeing profit. This phenomenon, known as arbitrage, could enable sophisticated participants to exploit such inconsistencies. In this paper, we conduct an empirical arbitrage analysis on Polymarket data to answer three key questions: (Q1) What conditions give rise to arbitrage (Q2) Does arbitrage actually occur on Polymarket and (Q3) Has anyone exploited these opportunities. A major challenge in analyzing arbitrage between related markets lies in the scalability of comparisons across a large number of markets and conditions, with a naive analysis requiring $O(2^{“n+m”})$ comparisons. To overcome this, we employ a heuristic-driven reduction strategy based on timeliness, topical similarity, and combinatorial relationships, further validated by expert input. Our study reveals two distinct forms of arbitrage on Polymarket: Market Rebalancing Arbitrage, which occurs within a single market or condition, and Combinatorial Arbitrage, which spans across multiple markets. We use on-chain historical order book data to analyze when these types of arbitrage opportunities have existed, and when they have been executed by users. We find a realized estimate of 40 million USD of profit extracted. ...

August 5, 2025 · 2 min · Research Team

Political Leanings in Web3 Betting: Decoding the Interplay of Political and Profitable Motives

Political Leanings in Web3 Betting: Decoding the Interplay of Political and Profitable Motives ArXiv ID: 2407.14844 “View on arXiv” Authors: Unknown Abstract Harnessing the transparent blockchain user behavior data, we construct the Political Betting Leaning Score (PBLS) to measure political leanings based on betting within Web3 prediction markets. Focusing on Polymarket and starting from the 2024 U.S. Presidential Election, we synthesize behaviors over 15,000 addresses across 4,500 events and 8,500 markets, capturing the intensity and direction of their political leanings by the PBLS. We validate the PBLS through internal consistency checks and external comparisons. We uncover relationships between our PBLS and betting behaviors through over 800 features capturing various behavioral aspects. A case study of the 2022 U.S. Senate election further demonstrates the ability of our measurement while decoding the dynamic interaction between political and profitable motives. Our findings contribute to understanding decision-making in decentralized markets, enhancing the analysis of behaviors within Web3 prediction environments. The insights of this study reveal the potential of blockchain in enabling innovative, multidisciplinary studies and could inform the development of more effective online prediction markets, improve the accuracy of forecast, and help the design and optimization of platform mechanisms. The data and code for the paper are accessible at the following link: https://github.com/anonymous. ...

July 20, 2024 · 2 min · Research Team

Decentralized Prediction Markets and Sports Books

Decentralized Prediction Markets and Sports Books ArXiv ID: 2307.08768 “View on arXiv” Authors: Unknown Abstract Prediction markets allow traders to bet on potential future outcomes. These markets exist for weather, political, sports, and economic forecasting. Within this work we consider a decentralized framework for prediction markets using automated market makers (AMMs). Specifically, we construct a liquidity-based AMM structure for prediction markets that, under reasonable axioms on the underlying utility function, satisfy meaningful financial properties on the cost of betting and the resulting pricing oracle. Importantly, we study how liquidity can be pooled or withdrawn from the AMM and the resulting implications to the market behavior. In considering this decentralized framework, we additionally propose financially meaningful fees that can be collected for trading to compensate the liquidity providers for their vital market function. ...

July 17, 2023 · 2 min · Research Team