false

Enhancing OHLC Data with Timing Features: A Machine Learning Evaluation

Enhancing OHLC Data with Timing Features: A Machine Learning Evaluation ArXiv ID: 2509.16137 “View on arXiv” Authors: Ruslan Tepelyan Abstract OHLC bar data is a widely used format for representing financial asset prices over time due to its balance of simplicity and informativeness. Bloomberg has recently introduced a new bar data product that includes additional timing information-specifically, the timestamps of the open, high, low, and close prices within each bar. In this paper, we investigate the impact of incorporating this timing data into machine learning models for predicting volume-weighted average price (VWAP). Our experiments show that including these features consistently improves predictive performance across multiple ML architectures. We observe gains across several key metrics, including log-likelihood, mean squared error (MSE), $R^2$, conditional variance estimation, and directional accuracy. ...

September 19, 2025 · 2 min · Research Team

Equity Premium Prediction: Taking into Account the Role of Long, even Asymmetric, Swings in Stock Market Behavior

Equity Premium Prediction: Taking into Account the Role of Long, even Asymmetric, Swings in Stock Market Behavior ArXiv ID: 2509.10483 “View on arXiv” Authors: Kuok Sin Un, Marcel Ausloos Abstract Through a novel approach, this paper shows that substantial change in stock market behavior has a statistically and economically significant impact on equity risk premium predictability both on in-sample and out-of-sample cases. In line with Auer’s ‘‘Bullish ratio’’, a ‘‘Bullish index’’ is introduced to measure the changes in stock market behavior, which we describe through a ‘‘fluctuation detrending moving average analysis’’ (FDMAA) for returns. We consider 28 indicators. We find that a ‘‘positive shock’’ of the Bullish Index is closely related to strong equity risk premium predictability for forecasts based on macroeconomic variables for up to six months. In contrast, a ‘’negative shock’’ is associated with strong equity risk premium predictability with adequate forecasts for up to nine months when based on technical indicators. ...

August 29, 2025 · 2 min · Research Team

Quantum Powered Credit Risk Assessment: A Novel Approach using hybrid Quantum-Classical Deep Neural Network for Row-Type Dependent Predictive Analysis

Quantum Powered Credit Risk Assessment: A Novel Approach using hybrid Quantum-Classical Deep Neural Network for Row-Type Dependent Predictive Analysis ArXiv ID: 2502.07806 “View on arXiv” Authors: Unknown Abstract The integration of Quantum Deep Learning (QDL) techniques into the landscape of financial risk analysis presents a promising avenue for innovation. This study introduces a framework for credit risk assessment in the banking sector, combining quantum deep learning techniques with adaptive modeling for Row-Type Dependent Predictive Analysis (RTDPA). By leveraging RTDPA, the proposed approach tailors predictive models to different loan categories, aiming to enhance the accuracy and efficiency of credit risk evaluation. While this work explores the potential of integrating quantum methods with classical deep learning for risk assessment, it focuses on the feasibility and performance of this hybrid framework rather than claiming transformative industry-wide impacts. The findings offer insights into how quantum techniques can complement traditional financial analysis, paving the way for further advancements in predictive modeling for credit risk. ...

February 6, 2025 · 2 min · Research Team

Investor Sentiment in Asset Pricing Models: A Review of Empirical Evidence

Investor Sentiment in Asset Pricing Models: A Review of Empirical Evidence ArXiv ID: 2411.13180 “View on arXiv” Authors: Unknown Abstract This study conducted a comprehensive review of 71 papers published between 2000 and 2021 that employed various measures of investor sentiment to model returns. The analysis indicates that higher complexity of sentiment measures and models improves the coefficient of determination. However, there was insufficient evidence to support that models incorporating more complex sentiment measures have better predictive power than those employing simpler proxies. Additionally, the significance of sentiment varies based on the asset and time period being analyzed, suggesting that the consensus relying on the BW index as a sentiment measure may be subject to change. ...

November 20, 2024 · 2 min · Research Team

Credit Scores: Performance and Equity

Credit Scores: Performance and Equity ArXiv ID: 2409.00296 “View on arXiv” Authors: Unknown Abstract Credit scores are critical for allocating consumer debt in the United States, yet little evidence is available on their performance. We benchmark a widely used credit score against a machine learning model of consumer default and find significant misclassification of borrowers, especially those with low scores. Our model improves predictive accuracy for young, low-income, and minority groups due to its superior performance with low quality data, resulting in a gain in standing for these populations. Our findings suggest that improving credit scoring performance could lead to more equitable access to credit. ...

August 30, 2024 · 2 min · Research Team

StockGPT: A GenAI Model for Stock Prediction and Trading

StockGPT: A GenAI Model for Stock Prediction and Trading ArXiv ID: 2404.05101 “View on arXiv” Authors: Unknown Abstract This paper introduces StockGPT, an autoregressive ``number’’ model trained and tested on 70 million daily U.S.\ stock returns over nearly 100 years. Treating each return series as a sequence of tokens, StockGPT automatically learns the hidden patterns predictive of future returns via its attention mechanism. On a held-out test sample from 2001 to 2023, daily and monthly rebalanced long-short portfolios formed from StockGPT predictions yield strong performance. The StockGPT-based portfolios span momentum and long-/short-term reversals, eliminating the need for manually crafted price-based strategies, and yield highly significant alphas against leading stock market factors, suggesting a novel AI pricing effect. This highlights the immense promise of generative AI in surpassing human in making complex financial investment decisions. ...

April 7, 2024 · 2 min · Research Team

Sector Rotation by Factor Model and Fundamental Analysis

Sector Rotation by Factor Model and Fundamental Analysis ArXiv ID: 2401.00001 “View on arXiv” Authors: Unknown Abstract This study presents an analytical approach to sector rotation, leveraging both factor models and fundamental metrics. We initiate with a systematic classification of sectors, followed by an empirical investigation into their returns. Through factor analysis, the paper underscores the significance of momentum and short-term reversion in dictating sectoral shifts. A subsequent in-depth fundamental analysis evaluates metrics such as PE, PB, EV-to-EBITDA, Dividend Yield, among others. Our primary contribution lies in developing a predictive framework based on these fundamental indicators. The constructed models, post rigorous training, exhibit noteworthy predictive capabilities. The findings furnish a nuanced understanding of sector rotation strategies, with implications for asset management and portfolio construction in the financial domain. ...

November 18, 2023 · 2 min · Research Team

Earnings Prediction Using Recurrent Neural Networks

Earnings Prediction Using Recurrent Neural Networks ArXiv ID: 2311.10756 “View on arXiv” Authors: Unknown Abstract Firm disclosures about future prospects are crucial for corporate valuation and compliance with global regulations, such as the EU’s MAR and the US’s SEC Rule 10b-5 and RegFD. To comply with disclosure obligations, issuers must identify nonpublic information with potential material impact on security prices as only new, relevant and unexpected information materially affects prices in efficient markets. Financial analysts, assumed to represent public knowledge on firms’ earnings prospects, face limitations in offering comprehensive coverage and unbiased estimates. This study develops a neural network to forecast future firm earnings, using four decades of financial data, addressing analysts’ coverage gaps and potentially revealing hidden insights. The model avoids selectivity and survivorship biases as it allows for missing data. Furthermore, the model is able to produce both fiscal-year-end and quarterly earnings predictions. Its performance surpasses benchmark models from the academic literature by a wide margin and outperforms analysts’ forecasts for fiscal-year-end earnings predictions. ...

November 10, 2023 · 2 min · Research Team

Desenvolvimento de modelo para predição de cotações de ação baseada em análise de sentimentos de tweets

Desenvolvimento de modelo para predição de cotações de ação baseada em análise de sentimentos de tweets ArXiv ID: 2309.06538 “View on arXiv” Authors: Unknown Abstract Training machine learning models for predicting stock market share prices is an active area of research since the automatization of trading such papers was available in real time. While most of the work in this field of research is done by training Neural networks based on past prices of stock shares, in this work, we use iFeel 2.0 platform to extract 19 sentiment features from posts obtained from microblog platform Twitter that mention the company Petrobras. Then, we used those features to train XBoot models to predict future stock prices for the referred company. Later, we simulated the trading of Petrobras’ shares based on the model’s outputs and determined the gain of R$88,82 (net) in a 250-day period when compared to a 100 random models’ average performance. ...

September 11, 2023 · 2 min · Research Team

Advances in Financial Machine Learning: Lecture 10/10 (seminar slides)

Advances in Financial Machine Learning: Lecture 10/10 (seminar slides) ArXiv ID: ssrn-3447398 “View on arXiv” Authors: Unknown Abstract Machine learning (ML) is changing virtually every aspect of our lives. Today ML algorithms accomplish tasks that until recently only expert humans could perform Keywords: machine learning, algorithms, computational methods, AI, predictive modeling, Equities Complexity vs Empirical Score Math Complexity: 6.5/10 Empirical Rigor: 7.0/10 Quadrant: Holy Grail Why: The paper advances sophisticated mathematical concepts like gradient boosting and probabilistic graphical models, requiring advanced linear algebra and optimization theory. It also includes data-driven empirical validation, with specific attention to performance metrics, cross-validation, and real-world datasets, indicating backtest readiness. flowchart TD G["Research Goal: Predict Equities Returns"] --> D D["Input: Financial Data"] --> M subgraph M ["Key Methodology"] M1["Feature Engineering"] --> M2["Cross-Validation"] --> M3["Model Selection"] end M --> C["Computational Process: ML Algorithms"] C --> F["Outcomes: Predictive Models"] F --> K["Findings: Improved Accuracy & Risk Management"]

November 14, 2019 · 1 min · Research Team