false

Price Discovery in Cryptocurrency Markets

Price Discovery in Cryptocurrency Markets ArXiv ID: 2506.08718 “View on arXiv” Authors: Juan Plazuelo Pascual, Carlos Tardon Rubio, Juan Toro Cebada, Angel Hernando Veciana Abstract This document analyzes price discovery in cryptocurrency markets by comparing centralized and decentralized exchanges, as well as spot and futures markets. The study focuses first on Ethereum (ETH) and then applies a similar approach to Bitcoin (BTC). Chapter 1 outlines the theoretical framework, emphasizing the structural differences between centralized exchanges and decentralized finance mechanisms, especially Automated Market Makers (AMMs). It also explains how to construct an order book from a liquidity pool in a decentralized setting for comparison with centralized exchanges. Chapter 2 describes the methodological tools used: Hasbrouck’s Information Share, Gonzalo and Granger’s Permanent-Transitory decomposition, and the Hayashi-Yoshida estimator. These are applied to explore lead-lag dynamics, cointegration, and price discovery across market types. Chapter 3 presents the empirical analysis. For ETH, it compares price dynamics on Binance and Uniswap v2 over a one-year period, focusing on five key events in 2024. For BTC, it analyzes the relationship between spot and futures prices on the CME. The study estimates lead-lag effects and cointegration in both cases. Results show that centralized markets typically lead in ETH price discovery. In futures markets, while they tend to lead overall, high-volatility periods produce mixed outcomes. The findings have key implications for traders and institutions regarding liquidity, arbitrage, and market efficiency. Various metrics are used to benchmark the performance of modified AMMs and to understand the interaction between decentralized and centralized structures. ...

June 10, 2025 · 2 min · Research Team

An analysis of capital market through the lens of integral transforms: exploring efficient markets and information asymmetry

An analysis of capital market through the lens of integral transforms: exploring efficient markets and information asymmetry ArXiv ID: 2506.06350 “View on arXiv” Authors: Kiran Sharma, Abhijit Dutta, Rupak Mukherjee Abstract Post Modigliani and Miller (1958), the concept of usage of arbitrage created a permanent mark on the discourses of financial framework. The arbitrage process is largely based on information dissemination amongst the stakeholders operating in the financial market. The advent of the efficient market Hypothesis draws close to the M&M hypothesis. Giving importance to the arbitrage process, which effects the price discovery in the stock market. This divided the market as random and efficient cohort system. The focus was on which information forms a key factor in deciding the price formation in the market. However, the conventional techniques of analysis do not permit the price cycles to be interpreted beyond its singular wave-like cyclical movement. The apparent cyclic measurement is not coherent as the technical analysis does not give sustained result. Hence adaption of theories and computation from mathematical methods of physics ensures that these cycles are decomposed and the effect of the broken-down cycles is interpreted to understand the overall effect of information on price formation and discovery. In order to break the cycle this paper uses spectrum analysis to decompose and understand the above-said phenomenon in determining the price behavior in National Stock Exchange of India (NSE). ...

June 2, 2025 · 2 min · Research Team

Can Large Language Models Trade? Testing Financial Theories with LLM Agents in Market Simulations

Can Large Language Models Trade? Testing Financial Theories with LLM Agents in Market Simulations ArXiv ID: 2504.10789 “View on arXiv” Authors: Unknown Abstract This paper presents a realistic simulated stock market where large language models (LLMs) act as heterogeneous competing trading agents. The open-source framework incorporates a persistent order book with market and limit orders, partial fills, dividends, and equilibrium clearing alongside agents with varied strategies, information sets, and endowments. Agents submit standardized decisions using structured outputs and function calls while expressing their reasoning in natural language. Three findings emerge: First, LLMs demonstrate consistent strategy adherence and can function as value investors, momentum traders, or market makers per their instructions. Second, market dynamics exhibit features of real financial markets, including price discovery, bubbles, underreaction, and strategic liquidity provision. Third, the framework enables analysis of LLMs’ responses to varying market conditions, similar to partial dependence plots in machine-learning interpretability. The framework allows simulating financial theories without closed-form solutions, creating experimental designs that would be costly with human participants, and establishing how prompts can generate correlated behaviors affecting market stability. ...

April 15, 2025 · 2 min · Research Team

Data-driven measures of high-frequency trading

Data-driven measures of high-frequency trading ArXiv ID: 2405.08101 “View on arXiv” Authors: Unknown Abstract High-frequency trading (HFT) accounts for almost half of equity trading volume, yet it is not identified in public data. We develop novel data-driven measures of HFT activity that separate strategies that supply and demand liquidity. We train machine learning models to predict HFT activity observed in a proprietary dataset using concurrent public intraday data. Once trained on the dataset, these models generate HFT measures for the entire U.S. stock universe from 2010 to 2023. Our measures outperform conventional proxies, which struggle to capture HFT’s time dynamics. We further validate them using shocks to HFT activity, including latency arbitrage, exchange speed bumps, and data feed upgrades. Finally, our measures reveal how HFT affects fundamental information acquisition. Liquidity-supplying HFTs improve price discovery around earnings announcements while liquidity-demanding strategies impede it. ...

May 13, 2024 · 2 min · Research Team