false

Trading Under Uncertainty: A Distribution-Based Strategy for Futures Markets Using FutureQuant Transformer

Trading Under Uncertainty: A Distribution-Based Strategy for Futures Markets Using FutureQuant Transformer ArXiv ID: 2505.05595 “View on arXiv” Authors: Wenhao Guo, Yuda Wang, Zeqiao Huang, Changjiang Zhang, Shumin ma Abstract In the complex landscape of traditional futures trading, where vast data and variables like real-time Limit Order Books (LOB) complicate price predictions, we introduce the FutureQuant Transformer model, leveraging attention mechanisms to navigate these challenges. Unlike conventional models focused on point predictions, the FutureQuant model excels in forecasting the range and volatility of future prices, thus offering richer insights for trading strategies. Its ability to parse and learn from intricate market patterns allows for enhanced decision-making, significantly improving risk management and achieving a notable average gain of 0.1193% per 30-minute trade over state-of-the-art models with a simple algorithm using factors such as RSI, ATR, and Bollinger Bands. This innovation marks a substantial leap forward in predictive analytics within the volatile domain of futures trading. ...

May 8, 2025 · 2 min · Research Team

Multimodal Stock Price Prediction: A Case Study of the Russian Securities Market

Multimodal Stock Price Prediction: A Case Study of the Russian Securities Market ArXiv ID: 2503.08696 “View on arXiv” Authors: Unknown Abstract Classical asset price forecasting methods primarily rely on numerical data, such as price time series, trading volumes, limit order book data, and technical analysis indicators. However, the news flow plays a significant role in price formation, making the development of multimodal approaches that combine textual and numerical data for improved prediction accuracy highly relevant. This paper addresses the problem of forecasting financial asset prices using the multimodal approach that combines candlestick time series and textual news flow data. A unique dataset was collected for the study, which includes time series for 176 Russian stocks traded on the Moscow Exchange and 79,555 financial news articles in Russian. For processing textual data, pre-trained models RuBERT and Vikhr-Qwen2.5-0.5b-Instruct (a large language model) were used, while time series and vectorized text data were processed using an LSTM recurrent neural network. The experiments compared models based on a single modality (time series only) and two modalities, as well as various methods for aggregating text vector representations. Prediction quality was estimated using two key metrics: Accuracy (direction of price movement prediction: up or down) and Mean Absolute Percentage Error (MAPE), which measures the deviation of the predicted price from the true price. The experiments showed that incorporating textual modality reduced the MAPE value by 55%. The resulting multimodal dataset holds value for the further adaptation of language models in the financial sector. Future research directions include optimizing textual modality parameters, such as the time window, sentiment, and chronological order of news messages. ...

March 5, 2025 · 3 min · Research Team

Transforming Japan Real Estate

Transforming Japan Real Estate ArXiv ID: 2405.20715 “View on arXiv” Authors: Unknown Abstract The Japanese real estate market, valued over 35 trillion USD, offers significant investment opportunities. Accurate rent and price forecasting could provide a substantial competitive edge. This paper explores using alternative data variables to predict real estate performance in 1100 Japanese municipalities. A comprehensive house price index was created, covering all municipalities from 2005 to the present, using a dataset of over 5 million transactions. This core dataset was enriched with economic factors spanning decades, allowing for price trajectory predictions. The findings show that alternative data variables can indeed forecast real estate performance effectively. Investment signals based on these variables yielded notable returns with low volatility. For example, the net migration ratio delivered an annualized return of 4.6% with a Sharpe ratio of 1.5. Taxable income growth and new dwellings ratio also performed well, with annualized returns of 4.1% (Sharpe ratio of 1.3) and 3.3% (Sharpe ratio of 0.9), respectively. When combined with transformer models to predict risk-adjusted returns 4 years in advance, the model achieved an R-squared score of 0.28, explaining nearly 30% of the variation in future municipality prices. These results highlight the potential of alternative data variables in real estate investment. They underscore the need for further research to identify more predictive factors. Nonetheless, the evidence suggests that such data can provide valuable insights into real estate price drivers, enabling more informed investment decisions in the Japanese market. ...

May 31, 2024 · 2 min · Research Team

Carbon Price Forecasting with Quantile Regression and Feature Selection

Carbon Price Forecasting with Quantile Regression and Feature Selection ArXiv ID: 2305.03224 “View on arXiv” Authors: Unknown Abstract Carbon futures has recently emerged as a novel financial asset in the trading markets such as the European Union and China. Monitoring the trend of the carbon price has become critical for both national policy-making as well as industrial manufacturing planning. However, various geopolitical, social, and economic factors can impose substantial influence on the carbon price. Due to its volatility and non-linearity, predicting accurate carbon prices is generally a difficult task. In this study, we propose to improve carbon price forecasting with several novel practices. First, we collect various influencing factors, including commodity prices, export volumes such as oil and natural gas, and prosperity indices. Then we select the most significant factors and disclose their optimal grouping for explainability. Finally, we use the Sparse Quantile Group Lasso and Adaptive Sparse Quantile Group Lasso for robust price predictions. We demonstrate through extensive experimental studies that our proposed methods outperform existing ones. Also, our quantile predictions provide a complete profile of future prices at different levels, which better describes the distributions of the carbon market. ...

May 5, 2023 · 2 min · Research Team