false

Financial Data Analysis with Robust Federated Logistic Regression

Financial Data Analysis with Robust Federated Logistic Regression ArXiv ID: 2504.20250 “View on arXiv” Authors: Kun Yang, Nikhil Krishnan, Sanjeev R. Kulkarni Abstract In this study, we focus on the analysis of financial data in a federated setting, wherein data is distributed across multiple clients or locations, and the raw data never leaves the local devices. Our primary focus is not only on the development of efficient learning frameworks (for protecting user data privacy) in the field of federated learning but also on the importance of designing models that are easier to interpret. In addition, we care about the robustness of the framework to outliers. To achieve these goals, we propose a robust federated logistic regression-based framework that strives to strike a balance between these goals. To verify the feasibility of our proposed framework, we carefully evaluate its performance not only on independently identically distributed (IID) data but also on non-IID data, especially in scenarios involving outliers. Extensive numerical results collected from multiple public datasets demonstrate that our proposed method can achieve comparable performance to those of classical centralized algorithms, such as Logistical Regression, Decision Tree, and K-Nearest Neighbors, in both binary and multi-class classification tasks. ...

April 28, 2025 · 2 min · Research Team

Six Levels of Privacy: A Framework for Financial Synthetic Data

Six Levels of Privacy: A Framework for Financial Synthetic Data ArXiv ID: 2403.14724 “View on arXiv” Authors: Unknown Abstract Synthetic Data is increasingly important in financial applications. In addition to the benefits it provides, such as improved financial modeling and better testing procedures, it poses privacy risks as well. Such data may arise from client information, business information, or other proprietary sources that must be protected. Even though the process by which Synthetic Data is generated serves to obscure the original data to some degree, the extent to which privacy is preserved is hard to assess. Accordingly, we introduce a hierarchy of levels'' of privacy that are useful for categorizing Synthetic Data generation methods and the progressively improved protections they offer. While the six levels were devised in the context of financial applications, they may also be appropriate for other industries as well. Our paper includes: A brief overview of Financial Synthetic Data, how it can be used, how its value can be assessed, privacy risks, and privacy attacks. We close with details of the Six Levels’’ that include defenses against those attacks. ...

March 20, 2024 · 2 min · Research Team

FinDiff: Diffusion Models for Financial Tabular Data Generation

FinDiff: Diffusion Models for Financial Tabular Data Generation ArXiv ID: 2309.01472 “View on arXiv” Authors: Unknown Abstract The sharing of microdata, such as fund holdings and derivative instruments, by regulatory institutions presents a unique challenge due to strict data confidentiality and privacy regulations. These challenges often hinder the ability of both academics and practitioners to conduct collaborative research effectively. The emergence of generative models, particularly diffusion models, capable of synthesizing data mimicking the underlying distributions of real-world data presents a compelling solution. This work introduces ‘FinDiff’, a diffusion model designed to generate real-world financial tabular data for a variety of regulatory downstream tasks, for example economic scenario modeling, stress tests, and fraud detection. The model uses embedding encodings to model mixed modality financial data, comprising both categorical and numeric attributes. The performance of FinDiff in generating synthetic tabular financial data is evaluated against state-of-the-art baseline models using three real-world financial datasets (including two publicly available datasets and one proprietary dataset). Empirical results demonstrate that FinDiff excels in generating synthetic tabular financial data with high fidelity, privacy, and utility. ...

September 4, 2023 · 2 min · Research Team