false

Nonparametric Estimation of Self- and Cross-Impact

Nonparametric Estimation of Self- and Cross-Impact ArXiv ID: 2510.06879 “View on arXiv” Authors: Natascha Hey, Eyal Neuman, Sturmius Tuschmann Abstract We introduce an offline nonparametric estimator for concave multi-asset propagator models based on a dataset of correlated price trajectories and metaorders. Compared to parametric models, our framework avoids parameter explosion in the multi-asset case and yields confidence bounds for the estimator. We implement the estimator using both proprietary metaorder data from Capital Fund Management (CFM) and publicly available S&P order flow data, where we augment the former dataset using a metaorder proxy. In particular, we provide unbiased evidence that self-impact is concave and exhibits a shifted power-law decay, and show that the metaorder proxy stabilizes the calibration. Moreover, we find that introducing cross-impact provides a significant gain in explanatory power, with concave specifications outperforming linear ones, suggesting that the square-root law extends to cross-impact. We also measure asymmetric cross-impact between assets driven by relative liquidity differences. Finally, we demonstrate that a shape-constrained projection of the nonparametric kernel not only ensures interpretability but also slightly outperforms established parametric models in terms of predictive accuracy. ...

October 8, 2025 · 2 min · Research Team

Fredholm Approach to Nonlinear Propagator Models

Fredholm Approach to Nonlinear Propagator Models ArXiv ID: 2503.04323 “View on arXiv” Authors: Unknown Abstract We formulate and solve an optimal trading problem with alpha signals, where transactions induce a nonlinear transient price impact described by a general propagator model, including power-law decay. Using a variational approach, we demonstrate that the optimal trading strategy satisfies a nonlinear stochastic Fredholm equation with both forward and backward coefficients. We prove the existence and uniqueness of the solution under a monotonicity condition reflecting the nonlinearity of the price impact. Moreover, we derive an existence result for the optimal strategy beyond this condition when the underlying probability space is countable. In addition, we introduce a novel iterative scheme and establish its convergence to the optimal trading strategy. Finally, we provide a numerical implementation of the scheme that illustrates its convergence, stability, and the effects of concavity on optimal execution strategies under exponential and power-law decay. ...

March 6, 2025 · 2 min · Research Team

In-Context Operator Learning for Linear Propagator Models

In-Context Operator Learning for Linear Propagator Models ArXiv ID: 2501.15106 “View on arXiv” Authors: Unknown Abstract We study operator learning in the context of linear propagator models for optimal order execution problems with transient price impact à la Bouchaud et al. (2004) and Gatheral (2010). Transient price impact persists and decays over time according to some propagator kernel. Specifically, we propose to use In-Context Operator Networks (ICON), a novel transformer-based neural network architecture introduced by Yang et al. (2023), which facilitates data-driven learning of operators by merging offline pre-training with an online few-shot prompting inference. First, we train ICON to learn the operator from various propagator models that maps the trading rate to the induced transient price impact. The inference step is then based on in-context prediction, where ICON is presented only with a few examples. We illustrate that ICON is capable of accurately inferring the underlying price impact model from the data prompts, even with propagator kernels not seen in the training data. In a second step, we employ the pre-trained ICON model provided with context as a surrogate operator in solving an optimal order execution problem via a neural network control policy, and demonstrate that the exact optimal execution strategies from Abi Jaber and Neuman (2022) for the models generating the context are correctly retrieved. Our introduced methodology is very general, offering a new approach to solving optimal stochastic control problems with unknown state dynamics, inferred data-efficiently from a limited number of examples by leveraging the few-shot and transfer learning capabilities of transformer networks. ...

January 25, 2025 · 2 min · Research Team