false

AlphaEval: A Comprehensive and Efficient Evaluation Framework for Formula Alpha Mining

AlphaEval: A Comprehensive and Efficient Evaluation Framework for Formula Alpha Mining ArXiv ID: 2508.13174 “View on arXiv” Authors: Hongjun Ding, Binqi Chen, Jinsheng Huang, Taian Guo, Zhengyang Mao, Guoyi Shao, Lutong Zou, Luchen Liu, Ming Zhang Abstract Formula alpha mining, which generates predictive signals from financial data, is critical for quantitative investment. Although various algorithmic approaches-such as genetic programming, reinforcement learning, and large language models-have significantly expanded the capacity for alpha discovery, systematic evaluation remains a key challenge. Existing evaluation metrics predominantly include backtesting and correlation-based measures. Backtesting is computationally intensive, inherently sequential, and sensitive to specific strategy parameters. Correlation-based metrics, though efficient, assess only predictive ability and overlook other crucial properties such as temporal stability, robustness, diversity, and interpretability. Additionally, the closed-source nature of most existing alpha mining models hinders reproducibility and slows progress in this field. To address these issues, we propose AlphaEval, a unified, parallelizable, and backtest-free evaluation framework for automated alpha mining models. AlphaEval assesses the overall quality of generated alphas along five complementary dimensions: predictive power, stability, robustness to market perturbations, financial logic, and diversity. Extensive experiments across representative alpha mining algorithms demonstrate that AlphaEval achieves evaluation consistency comparable to comprehensive backtesting, while providing more comprehensive insights and higher efficiency. Furthermore, AlphaEval effectively identifies superior alphas compared to traditional single-metric screening approaches. All implementations and evaluation tools are open-sourced to promote reproducibility and community engagement. ...

August 10, 2025 · 2 min · Research Team

QuantBench: Benchmarking AI Methods for Quantitative Investment

QuantBench: Benchmarking AI Methods for Quantitative Investment ArXiv ID: 2504.18600 “View on arXiv” Authors: Saizhuo Wang, Hao Kong, Jiadong Guo, Fengrui Hua, Yiyan Qi, Wanyun Zhou, Jiahao Zheng, Xinyu Wang, Lionel M. Ni, Jian Guo Abstract The field of artificial intelligence (AI) in quantitative investment has seen significant advancements, yet it lacks a standardized benchmark aligned with industry practices. This gap hinders research progress and limits the practical application of academic innovations. We present QuantBench, an industrial-grade benchmark platform designed to address this critical need. QuantBench offers three key strengths: (1) standardization that aligns with quantitative investment industry practices, (2) flexibility to integrate various AI algorithms, and (3) full-pipeline coverage of the entire quantitative investment process. Our empirical studies using QuantBench reveal some critical research directions, including the need for continual learning to address distribution shifts, improved methods for modeling relational financial data, and more robust approaches to mitigate overfitting in low signal-to-noise environments. By providing a common ground for evaluation and fostering collaboration between researchers and practitioners, QuantBench aims to accelerate progress in AI for quantitative investment, similar to the impact of benchmark platforms in computer vision and natural language processing. ...

April 24, 2025 · 2 min · Research Team

From Deep Learning to LLMs: A survey of AI in Quantitative Investment

From Deep Learning to LLMs: A survey of AI in Quantitative Investment ArXiv ID: 2503.21422 “View on arXiv” Authors: Unknown Abstract Quantitative investment (quant) is an emerging, technology-driven approach in asset management, increasingy shaped by advancements in artificial intelligence. Recent advances in deep learning and large language models (LLMs) for quant finance have improved predictive modeling and enabled agent-based automation, suggesting a potential paradigm shift in this field. In this survey, taking alpha strategy as a representative example, we explore how AI contributes to the quantitative investment pipeline. We first examine the early stage of quant research, centered on human-crafted features and traditional statistical models with an established alpha pipeline. We then discuss the rise of deep learning, which enabled scalable modeling across the entire pipeline from data processing to order execution. Building on this, we highlight the emerging role of LLMs in extending AI beyond prediction, empowering autonomous agents to process unstructured data, generate alphas, and support self-iterative workflows. ...

March 27, 2025 · 2 min · Research Team

FactorGCL: A Hypergraph-Based Factor Model with Temporal Residual Contrastive Learning for Stock Returns Prediction

FactorGCL: A Hypergraph-Based Factor Model with Temporal Residual Contrastive Learning for Stock Returns Prediction ArXiv ID: 2502.05218 “View on arXiv” Authors: Unknown Abstract As a fundamental method in economics and finance, the factor model has been extensively utilized in quantitative investment. In recent years, there has been a paradigm shift from traditional linear models with expert-designed factors to more flexible nonlinear machine learning-based models with data-driven factors, aiming to enhance the effectiveness of these factor models. However, due to the low signal-to-noise ratio in market data, mining effective factors in data-driven models remains challenging. In this work, we propose a hypergraph-based factor model with temporal residual contrastive learning (FactorGCL) that employs a hypergraph structure to better capture high-order nonlinear relationships among stock returns and factors. To mine hidden factors that supplement human-designed prior factors for predicting stock returns, we design a cascading residual hypergraph architecture, in which the hidden factors are extracted from the residual information after removing the influence of prior factors. Additionally, we propose a temporal residual contrastive learning method to guide the extraction of effective and comprehensive hidden factors by contrasting stock-specific residual information over different time periods. Our extensive experiments on real stock market data demonstrate that FactorGCL not only outperforms existing state-of-the-art methods but also mines effective hidden factors for predicting stock returns. ...

February 5, 2025 · 2 min · Research Team

Guided Learning: Lubricating End-to-End Modeling for Multi-stage Decision-making

Guided Learning: Lubricating End-to-End Modeling for Multi-stage Decision-making ArXiv ID: 2411.10496 “View on arXiv” Authors: Unknown Abstract Multi-stage decision-making is crucial in various real-world artificial intelligence applications, including recommendation systems, autonomous driving, and quantitative investment systems. In quantitative investment, for example, the process typically involves several sequential stages such as factor mining, alpha prediction, portfolio optimization, and sometimes order execution. While state-of-the-art end-to-end modeling aims to unify these stages into a single global framework, it faces significant challenges: (1) training such a unified neural network consisting of multiple stages between initial inputs and final outputs often leads to suboptimal solutions, or even collapse, and (2) many decision-making scenarios are not easily reducible to standard prediction problems. To overcome these challenges, we propose Guided Learning, a novel methodological framework designed to enhance end-to-end learning in multi-stage decision-making. We introduce the concept of a guide'', a function that induces the training of intermediate neural network layers towards some phased goals, directing gradients away from suboptimal collapse. For decision scenarios lacking explicit supervisory labels, we incorporate a utility function that quantifies the reward’’ of the throughout decision. Additionally, we explore the connections between Guided Learning and classic machine learning paradigms such as supervised, unsupervised, semi-supervised, multi-task, and reinforcement learning. Experiments on quantitative investment strategy building demonstrate that guided learning significantly outperforms both traditional stage-wise approaches and existing end-to-end methods. ...

November 15, 2024 · 2 min · Research Team

AlphaForge: A Framework to Mine and Dynamically Combine Formulaic Alpha Factors

AlphaForge: A Framework to Mine and Dynamically Combine Formulaic Alpha Factors ArXiv ID: 2406.18394 “View on arXiv” Authors: Unknown Abstract The complexity of financial data, characterized by its variability and low signal-to-noise ratio, necessitates advanced methods in quantitative investment that prioritize both performance and interpretability.Transitioning from early manual extraction to genetic programming, the most advanced approach in the alpha factor mining domain currently employs reinforcement learning to mine a set of combination factors with fixed weights. However, the performance of resultant alpha factors exhibits inconsistency, and the inflexibility of fixed factor weights proves insufficient in adapting to the dynamic nature of financial markets. To address this issue, this paper proposes a two-stage formulaic alpha generating framework AlphaForge, for alpha factor mining and factor combination. This framework employs a generative-predictive neural network to generate factors, leveraging the robust spatial exploration capabilities inherent in deep learning while concurrently preserving diversity. The combination model within the framework incorporates the temporal performance of factors for selection and dynamically adjusts the weights assigned to each component alpha factor. Experiments conducted on real-world datasets demonstrate that our proposed model outperforms contemporary benchmarks in formulaic alpha factor mining. Furthermore, our model exhibits a notable enhancement in portfolio returns within the realm of quantitative investment and real money investment. ...

June 26, 2024 · 2 min · Research Team

Application and practice of AI technology in quantitative investment

Application and practice of AI technology in quantitative investment ArXiv ID: 2404.18184 “View on arXiv” Authors: Unknown Abstract With the continuous development of artificial intelligence technology, using machine learning technology to predict market trends may no longer be out of reach. In recent years, artificial intelligence has become a research hotspot in the academic circle,and it has been widely used in image recognition, natural language processing and other fields, and also has a huge impact on the field of quantitative investment. As an investment method to obtain stable returns through data analysis, model construction and program trading, quantitative investment is deeply loved by financial institutions and investors. At the same time, as an important application field of quantitative investment, the quantitative investment strategy based on artificial intelligence technology arises at the historic moment.How to apply artificial intelligence to quantitative investment, so as to better achieve profit and risk control, has also become the focus and difficulty of the research. From a global perspective, inflation in the US and the Federal Reserve are the concerns of investors, which to some extent affects the direction of global assets, including the Chinese stock market. This paper studies the application of AI technology, quantitative investment, and AI technology in quantitative investment, aiming to provide investors with auxiliary decision-making, reduce the difficulty of investment analysis, and help them to obtain higher returns. ...

April 28, 2024 · 2 min · Research Team

Alpha-GPT 2.0: Human-in-the-Loop AI for Quantitative Investment

Alpha-GPT 2.0: Human-in-the-Loop AI for Quantitative Investment ArXiv ID: 2402.09746 “View on arXiv” Authors: Unknown Abstract Recently, we introduced a new paradigm for alpha mining in the realm of quantitative investment, developing a new interactive alpha mining system framework, Alpha-GPT. This system is centered on iterative Human-AI interaction based on large language models, introducing a Human-in-the-Loop approach to alpha discovery. In this paper, we present the next-generation Alpha-GPT 2.0 \footnote{“Draft. Work in progress”}, a quantitative investment framework that further encompasses crucial modeling and analysis phases in quantitative investment. This framework emphasizes the iterative, interactive research between humans and AI, embodying a Human-in-the-Loop strategy throughout the entire quantitative investment pipeline. By assimilating the insights of human researchers into the systematic alpha research process, we effectively leverage the Human-in-the-Loop approach, enhancing the efficiency and precision of quantitative investment research. ...

February 15, 2024 · 2 min · Research Team

QuantAgent: Seeking Holy Grail in Trading by Self-Improving Large Language Model

QuantAgent: Seeking Holy Grail in Trading by Self-Improving Large Language Model ArXiv ID: 2402.03755 “View on arXiv” Authors: Unknown Abstract Autonomous agents based on Large Language Models (LLMs) that devise plans and tackle real-world challenges have gained prominence.However, tailoring these agents for specialized domains like quantitative investment remains a formidable task. The core challenge involves efficiently building and integrating a domain-specific knowledge base for the agent’s learning process. This paper introduces a principled framework to address this challenge, comprising a two-layer loop.In the inner loop, the agent refines its responses by drawing from its knowledge base, while in the outer loop, these responses are tested in real-world scenarios to automatically enhance the knowledge base with new insights.We demonstrate that our approach enables the agent to progressively approximate optimal behavior with provable efficiency.Furthermore, we instantiate this framework through an autonomous agent for mining trading signals named QuantAgent. Empirical results showcase QuantAgent’s capability in uncovering viable financial signals and enhancing the accuracy of financial forecasts. ...

February 6, 2024 · 2 min · Research Team

Alpha-GPT: Human-AI Interactive Alpha Mining for Quantitative Investment

Alpha-GPT: Human-AI Interactive Alpha Mining for Quantitative Investment ArXiv ID: 2308.00016 “View on arXiv” Authors: Unknown Abstract One of the most important tasks in quantitative investment research is mining new alphas (effective trading signals or factors). Traditional alpha mining methods, either hand-crafted factor synthesizing or algorithmic factor mining (e.g., search with genetic programming), have inherent limitations, especially in implementing the ideas of quants. In this work, we propose a new alpha mining paradigm by introducing human-AI interaction, and a novel prompt engineering algorithmic framework to implement this paradigm by leveraging the power of large language models. Moreover, we develop Alpha-GPT, a new interactive alpha mining system framework that provides a heuristic way to ``understand’’ the ideas of quant researchers and outputs creative, insightful, and effective alphas. We demonstrate the effectiveness and advantage of Alpha-GPT via a number of alpha mining experiments. ...

July 31, 2023 · 2 min · Research Team