false

Financial Text Classification Based On rLoRA Finetuning On Qwen3-8B model

Financial Text Classification Based On rLoRA Finetuning On Qwen3-8B model ArXiv ID: 2512.00630 “View on arXiv” Authors: Zhiming Lian Abstract Financial text classification has increasingly become an important aspect in quantitative trading systems and related tasks, such as financial sentiment analysis and the classification of financial news. In this paper, we assess the performance of the large language model Qwen3-8B on both tasks. Qwen3-8B is a state-of-the-art model that exhibits strong instruction-following and multilingual capabilities, and is distinct from standard models, primarily because it is specifically optimized for efficient fine tuning and high performance on reasoning-based benchmarks, making it suitable for financial applications. To adapt this model, we apply Noisy Embedding Instruction Finetuning and based on our previous work, this method increases robustness by injecting controlled noise into the embedding layers during supervised adaptation. We improve efficiency further with Rank-stabilized Low-Rank Adaptation low-rank optimization approach, and FlashAttention, which allow for faster training with lower GPU memory. For both tasks, we benchmark Qwen3-8B against standard classical transformer models, such as T5, BERT, and RoBERTa, and large models at scale, such as LLaMA1-7B, LLaMA2-7B, and Baichuan2-7B. The findings reveal that Qwen3-8B consistently surpasses these baselines by obtaining better classification accuracy and needing fewer training epochs. The synergy of instruction-based fine-tuning and memory-efficient optimization methods suggests Qwen3-8B can potentially serve as a scalable, economical option for real-time financial NLP applications. Qwen3-8B provides a very promising base for advancing dynamic quantitative trading systems in the future. ...

November 29, 2025 · 2 min · Research Team

Increase Alpha: Performance and Risk of an AI-Driven Trading Framework

Increase Alpha: Performance and Risk of an AI-Driven Trading Framework ArXiv ID: 2509.16707 “View on arXiv” Authors: Sid Ghatak, Arman Khaledian, Navid Parvini, Nariman Khaledian Abstract There are inefficiencies in financial markets, with unexploited patterns in price, volume, and cross-sectional relationships. While many approaches use large-scale transformers, we take a domain-focused path: feed-forward and recurrent networks with curated features to capture subtle regularities in noisy financial data. This smaller-footprint design is computationally lean and reliable under low signal-to-noise, crucial for daily production at scale. At Increase Alpha, we built a deep-learning framework that maps over 800 U.S. equities into daily directional signals with minimal computational overhead. The purpose of this paper is twofold. First, we outline the general overview of the predictive model without disclosing its core underlying concepts. Second, we evaluate its real-time performance through transparent, industry standard metrics. Forecast accuracy is benchmarked against both naive baselines and macro indicators. The performance outcomes are summarized via cumulative returns, annualized Sharpe ratio, and maximum drawdown. The best portfolio combination using our signals provides a low-risk, continuous stream of returns with a Sharpe ratio of more than 2.5, maximum drawdown of around 3%, and a near-zero correlation with the S&P 500 market benchmark. We also compare the model’s performance through different market regimes, such as the recent volatile movements of the US equity market in the beginning of 2025. Our analysis showcases the robustness of the model and significantly stable performance during these volatile periods. Collectively, these findings show that market inefficiencies can be systematically harvested with modest computational overhead if the right variables are considered. This report will emphasize the potential of traditional deep learning frameworks for generating an AI-driven edge in the financial market. ...

September 20, 2025 · 3 min · Research Team

QTMRL: An Agent for Quantitative Trading Decision-Making Based on Multi-Indicator Guided Reinforcement Learning

QTMRL: An Agent for Quantitative Trading Decision-Making Based on Multi-Indicator Guided Reinforcement Learning ArXiv ID: 2508.20467 “View on arXiv” Authors: Xiangdong Liu, Jiahao Chen Abstract In the highly volatile and uncertain global financial markets, traditional quantitative trading models relying on statistical modeling or empirical rules often fail to adapt to dynamic market changes and black swan events due to rigid assumptions and limited generalization. To address these issues, this paper proposes QTMRL (Quantitative Trading Multi-Indicator Reinforcement Learning), an intelligent trading agent combining multi-dimensional technical indicators with reinforcement learning (RL) for adaptive and stable portfolio management. We first construct a comprehensive multi-indicator dataset using 23 years of S&P 500 daily OHLCV data (2000-2022) for 16 representative stocks across 5 sectors, enriching raw data with trend, volatility, and momentum indicators to capture holistic market dynamics. Then we design a lightweight RL framework based on the Advantage Actor-Critic (A2C) algorithm, including data processing, A2C algorithm, and trading agent modules to support policy learning and actionable trading decisions. Extensive experiments compare QTMRL with 9 baselines (e.g., ARIMA, LSTM, moving average strategies) across diverse market regimes, verifying its superiority in profitability, risk adjustment, and downside risk control. The code of QTMRL is publicly available at https://github.com/ChenJiahaoJNU/QTMRL.git ...

August 28, 2025 · 2 min · Research Team

Machine Learning Enhanced Multi-Factor Quantitative Trading: A Cross-Sectional Portfolio Optimization Approach with Bias Correction

Machine Learning Enhanced Multi-Factor Quantitative Trading: A Cross-Sectional Portfolio Optimization Approach with Bias Correction ArXiv ID: 2507.07107 “View on arXiv” Authors: Yimin Du Abstract This paper presents a comprehensive machine learning framework for quantitative trading that achieves superior risk-adjusted returns through systematic factor engineering, real-time computation optimization, and cross-sectional portfolio construction. Our approach integrates multi-factor alpha discovery with bias correction techniques, leveraging PyTorch-accelerated factor computation and advanced portfolio optimization. The system processes 500-1000 factors derived from open-source alpha101 extensions and proprietary market microstructure signals. Key innovations include tensor-based factor computation acceleration, geometric Brownian motion data augmentation, and cross-sectional neutralization strategies. Empirical validation on Chinese A-share markets (2010-2024) demonstrates annualized returns of $20%$ with Sharpe ratios exceeding 2.0, significantly outperforming traditional approaches. Our analysis reveals the critical importance of bias correction in factor construction and the substantial impact of cross-sectional portfolio optimization on strategy performance. Code and experimental implementations are available at: https://github.com/initial-d/ml-quant-trading ...

June 2, 2025 · 2 min · Research Team

Financial Fine-tuning a Large Time Series Model

Financial Fine-tuning a Large Time Series Model ArXiv ID: 2412.09880 “View on arXiv” Authors: Unknown Abstract Large models have shown unprecedented capabilities in natural language processing, image generation, and most recently, time series forecasting. This leads us to ask the question: treating market prices as a time series, can large models be used to predict the market? In this paper, we answer this by evaluating the performance of the latest time series foundation model TimesFM on price prediction. We find that due to the irregular nature of price data, directly applying TimesFM gives unsatisfactory results and propose to fine-tune TimeFM on financial data for the task of price prediction. This is done by continual pre-training of the latest time series foundation model TimesFM on price data containing 100 million time points, spanning a range of financial instruments spanning hourly and daily granularities. The fine-tuned model demonstrates higher price prediction accuracy than the baseline model. We conduct mock trading for our model in various financial markets and show that it outperforms various benchmarks in terms of returns, sharpe ratio, max drawdown and trading cost. ...

December 13, 2024 · 2 min · Research Team

Pretrained LLM Adapted with LoRA as a Decision Transformer for Offline RL in Quantitative Trading

Pretrained LLM Adapted with LoRA as a Decision Transformer for Offline RL in Quantitative Trading ArXiv ID: 2411.17900 “View on arXiv” Authors: Unknown Abstract Developing effective quantitative trading strategies using reinforcement learning (RL) is challenging due to the high risks associated with online interaction with live financial markets. Consequently, offline RL, which leverages historical market data without additional exploration, becomes essential. However, existing offline RL methods often struggle to capture the complex temporal dependencies inherent in financial time series and may overfit to historical patterns. To address these challenges, we introduce a Decision Transformer (DT) initialized with pre-trained GPT-2 weights and fine-tuned using Low-Rank Adaptation (LoRA). This architecture leverages the generalization capabilities of pre-trained language models and the efficiency of LoRA to learn effective trading policies from expert trajectories solely from historical data. Our model performs competitively with established offline RL algorithms, including Conservative Q-Learning (CQL), Implicit Q-Learning (IQL), and Behavior Cloning (BC), as well as a baseline Decision Transformer with randomly initialized GPT-2 weights and LoRA. Empirical results demonstrate that our approach effectively learns from expert trajectories and secures superior rewards in certain trading scenarios, highlighting the effectiveness of integrating pre-trained language models and parameter-efficient fine-tuning in offline RL for quantitative trading. Replication code for our experiments is publicly available at https://github.com/syyunn/finrl-dt ...

November 26, 2024 · 2 min · Research Team

TradExpert: Revolutionizing Trading with Mixture of Expert LLMs

TradExpert: Revolutionizing Trading with Mixture of Expert LLMs ArXiv ID: 2411.00782 “View on arXiv” Authors: Unknown Abstract The integration of Artificial Intelligence (AI) in the financial domain has opened new avenues for quantitative trading, particularly through the use of Large Language Models (LLMs). However, the challenge of effectively synthesizing insights from diverse data sources and integrating both structured and unstructured data persists. This paper presents TradeExpert, a novel framework that employs a mix of experts (MoE) approach, using four specialized LLMs, each analyzing distinct sources of financial data, including news articles, market data, alpha factors, and fundamental data. The insights of these expert LLMs are further synthesized by a General Expert LLM to make a final prediction or decision. With specific prompts, TradeExpert can be switched between the prediction mode and the ranking mode for stock movement prediction and quantitative stock trading, respectively. In addition to existing benchmarks, we also release a large-scale financial dataset to comprehensively evaluate TradeExpert’s effectiveness. Our experimental results demonstrate TradeExpert’s superior performance across all trading scenarios. ...

October 16, 2024 · 2 min · Research Team

Alpha^2: Discovering Logical Formulaic Alphas using Deep Reinforcement Learning

$\text{“Alpha”}^2$: Discovering Logical Formulaic Alphas using Deep Reinforcement Learning ArXiv ID: 2406.16505 “View on arXiv” Authors: Unknown Abstract Alphas are pivotal in providing signals for quantitative trading. The industry highly values the discovery of formulaic alphas for their interpretability and ease of analysis, compared with the expressive yet overfitting-prone black-box alphas. In this work, we focus on discovering formulaic alphas. Prior studies on automatically generating a collection of formulaic alphas were mostly based on genetic programming (GP), which is known to suffer from the problems of being sensitive to the initial population, converting to local optima, and slow computation speed. Recent efforts employing deep reinforcement learning (DRL) for alpha discovery have not fully addressed key practical considerations such as alpha correlations and validity, which are crucial for their effectiveness. In this work, we propose a novel framework for alpha discovery using DRL by formulating the alpha discovery process as program construction. Our agent, $\text{“Alpha”}^2$, assembles an alpha program optimized for an evaluation metric. A search algorithm guided by DRL navigates through the search space based on value estimates for potential alpha outcomes. The evaluation metric encourages both the performance and the diversity of alphas for a better final trading strategy. Our formulation of searching alphas also brings the advantage of pre-calculation dimensional analysis, ensuring the logical soundness of alphas, and pruning the vast search space to a large extent. Empirical experiments on real-world stock markets demonstrates $\text{“Alpha”}^2$’s capability to identify a diverse set of logical and effective alphas, which significantly improves the performance of the final trading strategy. The code of our method is available at https://github.com/x35f/alpha2. ...

June 24, 2024 · 2 min · Research Team

Optimizing Portfolio Management and Risk Assessment in Digital Assets Using Deep Learning for Predictive Analysis

Optimizing Portfolio Management and Risk Assessment in Digital Assets Using Deep Learning for Predictive Analysis ArXiv ID: 2402.15994 “View on arXiv” Authors: Unknown Abstract Portfolio management issues have been extensively studied in the field of artificial intelligence in recent years, but existing deep learning-based quantitative trading methods have some areas where they could be improved. First of all, the prediction mode of stocks is singular; often, only one trading expert is trained by a model, and the trading decision is solely based on the prediction results of the model. Secondly, the data source used by the model is relatively simple, and only considers the data of the stock itself, ignoring the impact of the whole market risk on the stock. In this paper, the DQN algorithm is introduced into asset management portfolios in a novel and straightforward way, and the performance greatly exceeds the benchmark, which fully proves the effectiveness of the DRL algorithm in portfolio management. This also inspires us to consider the complexity of financial problems, and the use of algorithms should be fully combined with the problems to adapt. Finally, in this paper, the strategy is implemented by selecting the assets and actions with the largest Q value. Since different assets are trained separately as environments, there may be a phenomenon of Q value drift among different assets (different assets have different Q value distribution areas), which may easily lead to incorrect asset selection. Consider adding constraints so that the Q values of different assets share a Q value distribution to improve results. ...

February 25, 2024 · 2 min · Research Team

RiskMiner: Discovering Formulaic Alphas via Risk Seeking Monte Carlo Tree Search

RiskMiner: Discovering Formulaic Alphas via Risk Seeking Monte Carlo Tree Search ArXiv ID: 2402.07080 “View on arXiv” Authors: Unknown Abstract The formulaic alphas are mathematical formulas that transform raw stock data into indicated signals. In the industry, a collection of formulaic alphas is combined to enhance modeling accuracy. Existing alpha mining only employs the neural network agent, unable to utilize the structural information of the solution space. Moreover, they didn’t consider the correlation between alphas in the collection, which limits the synergistic performance. To address these problems, we propose a novel alpha mining framework, which formulates the alpha mining problems as a reward-dense Markov Decision Process (MDP) and solves the MDP by the risk-seeking Monte Carlo Tree Search (MCTS). The MCTS-based agent fully exploits the structural information of discrete solution space and the risk-seeking policy explicitly optimizes the best-case performance rather than average outcomes. Comprehensive experiments are conducted to demonstrate the efficiency of our framework. Our method outperforms all state-of-the-art benchmarks on two real-world stock sets under various metrics. Backtest experiments show that our alphas achieve the most profitable results under a realistic trading setting. ...

February 11, 2024 · 2 min · Research Team