false

Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks

Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks ArXiv ID: 2401.06139 “View on arXiv” Authors: Unknown Abstract As the Chinese stock market continues to evolve and its market structure grows increasingly complex, traditional quantitative trading methods are facing escalating challenges. Particularly, due to policy uncertainty and the frequent market fluctuations triggered by sudden economic events, existing models often struggle to accurately predict market dynamics. To address these challenges, this paper introduces Stockformer, a price-volume factor stock selection model that integrates wavelet transformation and a multitask self-attention network, aimed at enhancing responsiveness and predictive accuracy regarding market instabilities. Through discrete wavelet transform, Stockformer decomposes stock returns into high and low frequencies, meticulously capturing long-term market trends and short-term fluctuations, including abrupt events. Moreover, the model incorporates a Dual-Frequency Spatiotemporal Encoder and graph embedding techniques to effectively capture complex temporal and spatial relationships among stocks. Employing a multitask learning strategy, it simultaneously predicts stock returns and directional trends. Experimental results show that Stockformer outperforms existing advanced methods on multiple real stock market datasets. In strategy backtesting, Stockformer consistently demonstrates exceptional stability and reliability across market conditions-whether rising, falling, or fluctuating-particularly maintaining high performance during downturns or volatile periods, indicating a high adaptability to market fluctuations. To foster innovation and collaboration in the financial analysis sector, the Stockformer model’s code has been open-sourced and is available on the GitHub repository: https://github.com/Eric991005/Multitask-Stockformer. ...

November 23, 2023 · 2 min · Research Team

Stock Market Sentiment Classification and Backtesting via Fine-tuned BERT

Stock Market Sentiment Classification and Backtesting via Fine-tuned BERT ArXiv ID: 2309.11979 “View on arXiv” Authors: Unknown Abstract With the rapid development of big data and computing devices, low-latency automatic trading platforms based on real-time information acquisition have become the main components of the stock trading market, so the topic of quantitative trading has received widespread attention. And for non-strongly efficient trading markets, human emotions and expectations always dominate market trends and trading decisions. Therefore, this paper starts from the theory of emotion, taking East Money as an example, crawling user comment titles data from its corresponding stock bar and performing data cleaning. Subsequently, a natural language processing model BERT was constructed, and the BERT model was fine-tuned using existing annotated data sets. The experimental results show that the fine-tuned model has different degrees of performance improvement compared to the original model and the baseline model. Subsequently, based on the above model, the user comment data crawled is labeled with emotional polarity, and the obtained label information is combined with the Alpha191 model to participate in regression, and significant regression results are obtained. Subsequently, the regression model is used to predict the average price change for the next five days, and use it as a signal to guide automatic trading. The experimental results show that the incorporation of emotional factors increased the return rate by 73.8% compared to the baseline during the trading period, and by 32.41% compared to the original alpha191 model. Finally, we discuss the advantages and disadvantages of incorporating emotional factors into quantitative trading, and give possible directions for further research in the future. ...

September 21, 2023 · 2 min · Research Team

Unveiling the Potential of Sentiment: Can Large Language Models Predict Chinese Stock Price Movements?

Unveiling the Potential of Sentiment: Can Large Language Models Predict Chinese Stock Price Movements? ArXiv ID: 2306.14222 “View on arXiv” Authors: Unknown Abstract The rapid advancement of Large Language Models (LLMs) has spurred discussions about their potential to enhance quantitative trading strategies. LLMs excel in analyzing sentiments about listed companies from financial news, providing critical insights for trading decisions. However, the performance of LLMs in this task varies substantially due to their inherent characteristics. This paper introduces a standardized experimental procedure for comprehensive evaluations. We detail the methodology using three distinct LLMs, each embodying a unique approach to performance enhancement, applied specifically to the task of sentiment factor extraction from large volumes of Chinese news summaries. Subsequently, we develop quantitative trading strategies using these sentiment factors and conduct back-tests in realistic scenarios. Our results will offer perspectives about the performances of Large Language Models applied to extracting sentiments from Chinese news texts. ...

June 25, 2023 · 2 min · Research Team

Using Internal Bar Strength as a Key Indicator for Trading Country ETFs

Using Internal Bar Strength as a Key Indicator for Trading Country ETFs ArXiv ID: 2306.12434 “View on arXiv” Authors: Unknown Abstract This report aims to investigate the effectiveness of using internal bar strength (IBS) as a key indicator for trading country exchange-traded funds (ETFs). The study uses a quantitative approach to analyze historical price data for a bucket of country ETFs over a period of 10 years and uses the idea of Mean Reversion to create a profitable trading strategy. Our findings suggest that IBS can be a useful technical indicator for predicting short-term price movements in this basket of ETFs. ...

June 14, 2023 · 2 min · Research Team

Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning

Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning ArXiv ID: 2306.12964 “View on arXiv” Authors: Unknown Abstract In the field of quantitative trading, it is common practice to transform raw historical stock data into indicative signals for the market trend. Such signals are called alpha factors. Alphas in formula forms are more interpretable and thus favored by practitioners concerned with risk. In practice, a set of formulaic alphas is often used together for better modeling precision, so we need to find synergistic formulaic alpha sets that work well together. However, most traditional alpha generators mine alphas one by one separately, overlooking the fact that the alphas would be combined later. In this paper, we propose a new alpha-mining framework that prioritizes mining a synergistic set of alphas, i.e., it directly uses the performance of the downstream combination model to optimize the alpha generator. Our framework also leverages the strong exploratory capabilities of reinforcement learning~(RL) to better explore the vast search space of formulaic alphas. The contribution to the combination models’ performance is assigned to be the return used in the RL process, driving the alpha generator to find better alphas that improve upon the current set. Experimental evaluations on real-world stock market data demonstrate both the effectiveness and the efficiency of our framework for stock trend forecasting. The investment simulation results show that our framework is able to achieve higher returns compared to previous approaches. ...

May 25, 2023 · 2 min · Research Team

Temporal and Heterogeneous Graph Neural Network for Financial Time Series Prediction

Temporal and Heterogeneous Graph Neural Network for Financial Time Series Prediction ArXiv ID: 2305.08740 “View on arXiv” Authors: Unknown Abstract The price movement prediction of stock market has been a classical yet challenging problem, with the attention of both economists and computer scientists. In recent years, graph neural network has significantly improved the prediction performance by employing deep learning on company relations. However, existing relation graphs are usually constructed by handcraft human labeling or nature language processing, which are suffering from heavy resource requirement and low accuracy. Besides, they cannot effectively response to the dynamic changes in relation graphs. Therefore, in this paper, we propose a temporal and heterogeneous graph neural network-based (THGNN) approach to learn the dynamic relations among price movements in financial time series. In particular, we first generate the company relation graph for each trading day according to their historic price. Then we leverage a transformer encoder to encode the price movement information into temporal representations. Afterward, we propose a heterogeneous graph attention network to jointly optimize the embeddings of the financial time series data by transformer encoder and infer the probability of target movements. Finally, we conduct extensive experiments on the stock market in the United States and China. The results demonstrate the effectiveness and superior performance of our proposed methods compared with state-of-the-art baselines. Moreover, we also deploy the proposed THGNN in a real-world quantitative algorithm trading system, the accumulated portfolio return obtained by our method significantly outperforms other baselines. ...

May 9, 2023 · 2 min · Research Team

From Data to Trade: A Machine Learning Approach to Quantitative Trading

From Data to Trade: A Machine Learning Approach to Quantitative Trading ArXiv ID: ssrn-4315362 “View on arXiv” Authors: Unknown Abstract “Machine learning has revolutionized the field of quantitative trading, enabling traders to develop and implement sophisticated trading strategies that lev Keywords: Machine Learning, Quantitative Trading, Algorithmic Trading, Time Series Forecasting, Financial Markets, Multi-Asset Complexity vs Empirical Score Math Complexity: 3.0/10 Empirical Rigor: 2.0/10 Quadrant: Philosophers Why: The paper is a broad, introductory survey of ML concepts in quantitative trading with minimal advanced mathematics or original derivations, and lacks any code, backtests, or specific empirical results. flowchart TD A["Research Goal"] --> B["Data Collection"] A --> C["ML Model Selection"] B --> D["Feature Engineering"] C --> D D --> E["Model Training"] E --> F["Backtesting"] F --> G["Key Findings"]

January 5, 2023 · 1 min · Research Team