false

Connecting Quantum Computing with Classical Stochastic Simulation

Connecting Quantum Computing with Classical Stochastic Simulation ArXiv ID: 2509.18614 “View on arXiv” Authors: Jose Blanchet, Mark S. Squillante, Mario Szegedy, Guanyang Wang Abstract This tutorial paper introduces quantum approaches to Monte Carlo computation with applications in computational finance. We outline the basics of quantum computing using Grover’s algorithm for unstructured search to build intuition. We then move slowly to amplitude estimation problems and applications to counting and Monte Carlo integration, again using Grover-type iterations. A hands-on Python/Qiskit implementation illustrates these concepts applied to finance. The paper concludes with a discussion on current challenges in scaling quantum simulation techniques. ...

September 23, 2025 · 1 min · Research Team

Monte-Carlo Option Pricing in Quantum Parallel

Monte-Carlo Option Pricing in Quantum Parallel ArXiv ID: 2505.09459 “View on arXiv” Authors: Robert Scriba, Yuying Li, Jingbo B Wang Abstract Financial derivative pricing is a significant challenge in finance, involving the valuation of instruments like options based on underlying assets. While some cases have simple solutions, many require complex classical computational methods like Monte Carlo simulations and numerical techniques. However, as derivative complexities increase, these methods face limitations in computational power. Cases involving Non-Vanilla Basket pricing, American Options, and derivative portfolio risk analysis need extensive computations in higher-dimensional spaces, posing challenges for classical computers. Quantum computing presents a promising avenue by harnessing quantum superposition and entanglement, allowing the handling of high-dimensional spaces effectively. In this paper, we introduce a self-contained and all-encompassing quantum algorithm that operates without reliance on oracles or presumptions. More specifically, we develop an effective stochastic method for simulating exponentially many potential asset paths in quantum parallel, leading to a highly accurate final distribution of stock prices. Furthermore, we demonstrate how this algorithm can be extended to price more complex options and analyze risk within derivative portfolios. ...

May 14, 2025 · 2 min · Research Team