false

Benchmarking Classical and Quantum Models for DeFi Yield Prediction on Curve Finance

Benchmarking Classical and Quantum Models for DeFi Yield Prediction on Curve Finance ArXiv ID: 2508.02685 “View on arXiv” Authors: Chi-Sheng Chen, Aidan Hung-Wen Tsai Abstract The rise of decentralized finance (DeFi) has created a growing demand for accurate yield and performance forecasting to guide liquidity allocation strategies. In this study, we benchmark six models, XGBoost, Random Forest, LSTM, Transformer, quantum neural networks (QNN), and quantum support vector machines with quantum feature maps (QSVM-QNN), on one year of historical data from 28 Curve Finance pools. We evaluate model performance on test MAE, RMSE, and directional accuracy. Our results show that classical ensemble models, particularly XGBoost and Random Forest, consistently outperform both deep learning and quantum models. XGBoost achieves the highest directional accuracy (71.57%) with a test MAE of 1.80, while Random Forest attains the lowest test MAE of 1.77 and 71.36% accuracy. In contrast, quantum models underperform with directional accuracy below 50% and higher errors, highlighting current limitations in applying quantum machine learning to real-world DeFi time series data. This work offers a reproducible benchmark and practical insights into model suitability for DeFi applications, emphasizing the robustness of classical methods over emerging quantum approaches in this domain. ...

July 22, 2025 · 2 min · Research Team

Quantum Reinforcement Learning Trading Agent for Sector Rotation in the Taiwan Stock Market

Quantum Reinforcement Learning Trading Agent for Sector Rotation in the Taiwan Stock Market ArXiv ID: 2506.20930 “View on arXiv” Authors: Chi-Sheng Chen, Xinyu Zhang, Ya-Chuan Chen Abstract We propose a hybrid quantum-classical reinforcement learning framework for sector rotation in the Taiwan stock market. Our system employs Proximal Policy Optimization (PPO) as the backbone algorithm and integrates both classical architectures (LSTM, Transformer) and quantum-enhanced models (QNN, QRWKV, QASA) as policy and value networks. An automated feature engineering pipeline extracts financial indicators from capital share data to ensure consistent model input across all configurations. Empirical backtesting reveals a key finding: although quantum-enhanced models consistently achieve higher training rewards, they underperform classical models in real-world investment metrics such as cumulative return and Sharpe ratio. This discrepancy highlights a core challenge in applying reinforcement learning to financial domains – namely, the mismatch between proxy reward signals and true investment objectives. Our analysis suggests that current reward designs may incentivize overfitting to short-term volatility rather than optimizing risk-adjusted returns. This issue is compounded by the inherent expressiveness and optimization instability of quantum circuits under Noisy Intermediate-Scale Quantum (NISQ) constraints. We discuss the implications of this reward-performance gap and propose directions for future improvement, including reward shaping, model regularization, and validation-based early stopping. Our work offers a reproducible benchmark and critical insights into the practical challenges of deploying quantum reinforcement learning in real-world finance. ...

June 26, 2025 · 2 min · Research Team

HQNN-FSP: A Hybrid Classical-Quantum Neural Network for Regression-Based Financial Stock Market Prediction

HQNN-FSP: A Hybrid Classical-Quantum Neural Network for Regression-Based Financial Stock Market Prediction ArXiv ID: 2503.15403 “View on arXiv” Authors: Unknown Abstract Financial time-series forecasting remains a challenging task due to complex temporal dependencies and market fluctuations. This study explores the potential of hybrid quantum-classical approaches to assist in financial trend prediction by leveraging quantum resources for improved feature representation and learning. A custom Quantum Neural Network (QNN) regressor is introduced, designed with a novel ansatz tailored for financial applications. Two hybrid optimization strategies are proposed: (1) a sequential approach where classical recurrent models (RNN/LSTM) extract temporal dependencies before quantum processing, and (2) a joint learning framework that optimizes classical and quantum parameters simultaneously. Systematic evaluation using TimeSeriesSplit, k-fold cross-validation, and predictive error analysis highlights the ability of these hybrid models to integrate quantum computing into financial forecasting workflows. The findings demonstrate how quantum-assisted learning can contribute to financial modeling, offering insights into the practical role of quantum resources in time-series analysis. ...

March 19, 2025 · 2 min · Research Team