false

Forecasting the Performance of US Stock Market Indices During COVID-19: RF vs LSTM

Forecasting the Performance of US Stock Market Indices During COVID-19: RF vs LSTM ArXiv ID: 2306.03620 “View on arXiv” Authors: Unknown Abstract The US stock market experienced instability following the recession (2007-2009). COVID-19 poses a significant challenge to US stock traders and investors. Traders and investors should keep up with the stock market. This is to mitigate risks and improve profits by using forecasting models that account for the effects of the pandemic. With consideration of the COVID-19 pandemic after the recession, two machine learning models, including Random Forest and LSTM are used to forecast two major US stock market indices. Data on historical prices after the big recession is used for developing machine learning models and forecasting index returns. To evaluate the model performance during training, cross-validation is used. Additionally, hyperparameter optimizing, regularization, such as dropouts and weight decays, and preprocessing improve the performances of Machine Learning techniques. Using high-accuracy machine learning techniques, traders and investors can forecast stock market behavior, stay ahead of their competition, and improve profitability. Keywords: COVID-19, LSTM, S&P500, Random Forest, Russell 2000, Forecasting, Machine Learning, Time Series JEL Code: C6, C8, G4. ...

June 6, 2023 · 2 min · Research Team

Improved Financial Forecasting via Quantum Machine Learning

Improved Financial Forecasting via Quantum Machine Learning ArXiv ID: 2306.12965 “View on arXiv” Authors: Unknown Abstract Quantum algorithms have the potential to enhance machine learning across a variety of domains and applications. In this work, we show how quantum machine learning can be used to improve financial forecasting. First, we use classical and quantum Determinantal Point Processes to enhance Random Forest models for churn prediction, improving precision by almost 6%. Second, we design quantum neural network architectures with orthogonal and compound layers for credit risk assessment, which match classical performance with significantly fewer parameters. Our results demonstrate that leveraging quantum ideas can effectively enhance the performance of machine learning, both today as quantum-inspired classical ML solutions, and even more in the future, with the advent of better quantum hardware. ...

May 31, 2023 · 2 min · Research Team

Short-Term Stock Price Forecasting using exogenous variables and Machine Learning Algorithms

Short-Term Stock Price Forecasting using exogenous variables and Machine Learning Algorithms ArXiv ID: 2309.00618 “View on arXiv” Authors: Unknown Abstract Creating accurate predictions in the stock market has always been a significant challenge in finance. With the rise of machine learning as the next level in the forecasting area, this research paper compares four machine learning models and their accuracy in forecasting three well-known stocks traded in the NYSE in the short term from March 2020 to May 2022. We deploy, develop, and tune XGBoost, Random Forest, Multi-layer Perceptron, and Support Vector Regression models. We report the models that produce the highest accuracies from our evaluation metrics: RMSE, MAPE, MTT, and MPE. Using a training data set of 240 trading days, we find that XGBoost gives the highest accuracy despite running longer (up to 10 seconds). Results from this study may improve by further tuning the individual parameters or introducing more exogenous variables. ...

May 17, 2023 · 2 min · Research Team