An End-To-End LLM Enhanced Trading System
An End-To-End LLM Enhanced Trading System ArXiv ID: 2502.01574 “View on arXiv” Authors: Unknown Abstract This project introduces an end-to-end trading system that leverages Large Language Models (LLMs) for real-time market sentiment analysis. By synthesizing data from financial news and social media, the system integrates sentiment-driven insights with technical indicators to generate actionable trading signals. FinGPT serves as the primary model for sentiment analysis, ensuring domain-specific accuracy, while Kubernetes is used for scalable and efficient deployment. ...