false

Improving S&P 500 Volatility Forecasting through Regime-Switching Methods

Improving S&P 500 Volatility Forecasting through Regime-Switching Methods ArXiv ID: 2510.03236 “View on arXiv” Authors: Ava C. Blake, Nivika A. Gandhi, Anurag R. Jakkula Abstract Accurate prediction of financial market volatility is critical for risk management, derivatives pricing, and investment strategy. In this study, we propose a multitude of regime-switching methods to improve the prediction of S&P 500 volatility by capturing structural changes in the market across time. We use eleven years of SPX data, from May 1st, 2014 to May 27th, 2025, to compute daily realized volatility (RV) from 5-minute intraday log returns, adjusted for irregular trading days. To enhance forecast accuracy, we engineered features to capture both historical dynamics and forward-looking market sentiment across regimes. The regime-switching methods include a soft Markov switching algorithm to estimate soft-regime probabilities, a distributional spectral clustering method that uses XGBoost to assign clusters at prediction time, and a coefficient-based soft regime algorithm that extracts HAR coefficients from time segments segmented through the Mood test and clusters through Bayesian GMM for soft regime weights, using XGBoost to predict regime probabilities. Models were evaluated across three time periods–before, during, and after the COVID-19 pandemic. The coefficient-based clustering algorithm outperformed all other models, including the baseline autoregressive model, during all time periods. Additionally, each model was evaluated on its recursive forecasting performance for 5- and 10-day horizons during each time period. The findings of this study demonstrate the value of regime-aware modeling frameworks and soft clustering approaches in improving volatility forecasting, especially during periods of heightened uncertainty and structural change. ...

September 21, 2025 · 2 min · Research Team

Adaptive and Regime-Aware RL for Portfolio Optimization

Adaptive and Regime-Aware RL for Portfolio Optimization ArXiv ID: 2509.14385 “View on arXiv” Authors: Gabriel Nixon Raj Abstract This study proposes a regime-aware reinforcement learning framework for long-horizon portfolio optimization. Moving beyond traditional feedforward and GARCH-based models, we design realistic environments where agents dynamically reallocate capital in response to latent macroeconomic regime shifts. Agents receive hybrid observations and are trained using constrained reward functions that incorporate volatility penalties, capital resets, and tail-risk shocks. We benchmark multiple architectures, including PPO, LSTM-based PPO, and Transformer PPO, against classical baselines such as equal-weight and Sharpe-optimized portfolios. Our agents demonstrate robust performance under financial stress. While Transformer PPO achieves the highest risk-adjusted returns, LSTM variants offer a favorable trade-off between interpretability and training cost. The framework promotes regime-adaptive, explainable reinforcement learning for dynamic asset allocation. ...

September 17, 2025 · 2 min · Research Team

Currents Beneath Stability: A Stochastic Framework for Exchange Rate Instability Using Kramers Moyal Expansion

Currents Beneath Stability: A Stochastic Framework for Exchange Rate Instability Using Kramers Moyal Expansion ArXiv ID: 2507.01989 “View on arXiv” Authors: Yazdan Babazadeh Maghsoodlo, Amin Safaeesirat Abstract Understanding the stochastic behavior of currency exchange rates is critical for assessing financial stability and anticipating market transitions. In this study, we investigate the empirical dynamics of the USD exchange rate in three economies, including Iran, Turkey, and Sri Lanka, through the lens of the Kramers-Moyal expansion and Fokker-Planck formalism. Using log-return data, we confirm the Markovian nature of the exchange rate fluctuations, enabling us to model the system with a second-order Fokker-Planck equation. The inferred Langevin coefficients reveal a stabilizing linear drift and a nonlinear, return-dependent diffusion term, reflecting both regulatory effects and underlying volatility. A rolling-window estimation of these coefficients, paired with structural breakpoint detection, uncovers regime shifts that align with major political and economic events, offering insight into the hidden dynamics of currency instability. This framework provides a robust foundation for detecting latent transitions and modeling risk in complex financial systems. ...

June 28, 2025 · 2 min · Research Team

Dynamic allocation: extremes, tail dependence, and regime Shifts

Dynamic allocation: extremes, tail dependence, and regime Shifts ArXiv ID: 2506.12587 “View on arXiv” Authors: Yin Luo, Sheng Wang, Javed Jussa Abstract By capturing outliers, volatility clustering, and tail dependence in the asset return distribution, we build a sophisticated model to predict the downside risk of the global financial market. We further develop a dynamic regime switching model that can forecast real-time risk regime of the market. Our GARCH-DCC-Copula risk model can significantly improve both risk- and alpha-based global tactical asset allocation strategies. Our risk regime has strong predictive power of quantitative equity factor performance, which can help equity investors to build better factor models and asset allocation managers to construct more efficient risk premia portfolios. ...

June 14, 2025 · 2 min · Research Team

Compounding Effects in Leveraged ETFs: Beyond the Volatility Drag Paradigm

Compounding Effects in Leveraged ETFs: Beyond the Volatility Drag Paradigm ArXiv ID: 2504.20116 “View on arXiv” Authors: Chung-Han Hsieh, Jow-Ran Chang, Hui Hsiang Chen Abstract A common belief is that leveraged ETFs (LETFs) suffer long-term performance decay due to \emph{“volatility drag”}. We show that this view is incomplete: LETF performance depends fundamentally on return autocorrelation and return dynamics. In markets with independent returns, LETFs exhibit positive expected compounding effects on their target multiples. In serially correlated markets, trends enhance returns, while mean reversion induces underperformance. With a unified framework incorporating AR(1) and AR-GARCH models, continuous-time regime switching, and flexible rebalancing frequencies, we demonstrate that return dynamics – including return autocorrelation, volatility clustering, and regime persistence – determine whether LETFs outperform or underperform their targets. Empirically, using about 20 years of SPDR S&P~500 ETF and Nasdaq-100 ETF data, we confirm these theoretical predictions. Daily-rebalanced LETFs enhance returns in momentum-driven markets, whereas infrequent rebalancing mitigates losses in mean-reverting regimes. ...

April 28, 2025 · 2 min · Research Team

Modeling Regime Structure and Informational Drivers of Stock Market Volatility via the Financial Chaos Index

Modeling Regime Structure and Informational Drivers of Stock Market Volatility via the Financial Chaos Index ArXiv ID: 2504.18958 “View on arXiv” Authors: Masoud Ataei Abstract This paper investigates the structural dynamics of stock market volatility through the Financial Chaos Index, a tensor- and eigenvalue-based measure designed to capture realized volatility via mutual fluctuations among asset prices. Motivated by empirical evidence of regime-dependent volatility behavior and perceptual time dilation during financial crises, we develop a regime-switching framework based on the Modified Lognormal Power-Law distribution. Analysis of the FCIX from January 1990 to December 2023 identifies three distinct market regimes, low-chaos, intermediate-chaos, and high-chaos, each characterized by differing levels of systemic stress, statistical dispersion and persistence characteristics. Building upon the segmented regime structure, we further examine the informational forces that shape forward-looking market expectations. Using sentiment-based predictors derived from the Equity Market Volatility tracker, we employ an elastic net regression model to forecast implied volatility, as proxied by the VIX index. Our findings indicate that shifts in macroeconomic, financial, policy, and geopolitical uncertainty exhibit strong predictive power for volatility dynamics across regimes. Together, these results offer a unified empirical perspective on how systemic uncertainty governs both the realized evolution of financial markets and the anticipatory behavior embedded in implied volatility measures. ...

April 26, 2025 · 2 min · Research Team

Exploratory Mean-Variance Portfolio Optimization with Regime-Switching Market Dynamics

Exploratory Mean-Variance Portfolio Optimization with Regime-Switching Market Dynamics ArXiv ID: 2501.16659 “View on arXiv” Authors: Unknown Abstract Considering the continuous-time Mean-Variance (MV) portfolio optimization problem, we study a regime-switching market setting and apply reinforcement learning (RL) techniques to assist informed exploration within the control space. We introduce and solve the Exploratory Mean Variance with Regime Switching (EMVRS) problem. We also present a Policy Improvement Theorem. Further, we recognize that the widely applied Temporal Difference (TD) learning is not adequate for the EMVRS context, hence we consider Orthogonality Condition (OC) learning, leveraging the martingale property of the induced optimal value function from the analytical solution to EMVRS. We design a RL algorithm that has more meaningful parameterization using the market parameters and propose an updating scheme for each parameter. Our empirical results demonstrate the superiority of OC learning over TD learning with a clear convergence of the market parameters towards their corresponding ``grounding true" values in a simulated market scenario. In a real market data study, EMVRS with OC learning outperforms its counterparts with the highest mean and reasonably low volatility of the annualized portfolio returns. ...

January 28, 2025 · 2 min · Research Team

What Teaches Robots to Walk, Teaches Them to Trade too -- Regime Adaptive Execution using Informed Data and LLMs

What Teaches Robots to Walk, Teaches Them to Trade too – Regime Adaptive Execution using Informed Data and LLMs ArXiv ID: 2406.15508 “View on arXiv” Authors: Unknown Abstract Machine learning techniques applied to the problem of financial market forecasting struggle with dynamic regime switching, or underlying correlation and covariance shifts in true (hidden) market variables. Drawing inspiration from the success of reinforcement learning in robotics, particularly in agile locomotion adaptation of quadruped robots to unseen terrains, we introduce an innovative approach that leverages world knowledge of pretrained LLMs (aka. ‘privileged information’ in robotics) and dynamically adapts them using intrinsic, natural market rewards using LLM alignment technique we dub as “Reinforcement Learning from Market Feedback” (RLMF). Strong empirical results demonstrate the efficacy of our method in adapting to regime shifts in financial markets, a challenge that has long plagued predictive models in this domain. The proposed algorithmic framework outperforms best-performing SOTA LLM models on the existing (FLARE) benchmark stock-movement (SM) tasks by more than 15% improved accuracy. On the recently proposed NIFTY SM task, our adaptive policy outperforms the SOTA best performing trillion parameter models like GPT-4. The paper details the dual-phase, teacher-student architecture and implementation of our model, the empirical results obtained, and an analysis of the role of language embeddings in terms of Information Gain. ...

June 20, 2024 · 2 min · Research Team

Downside Risk Reduction Using Regime-Switching Signals: A Statistical Jump Model Approach

Downside Risk Reduction Using Regime-Switching Signals: A Statistical Jump Model Approach ArXiv ID: 2402.05272 “View on arXiv” Authors: Unknown Abstract This article investigates a regime-switching investment strategy aimed at mitigating downside risk by reducing market exposure during anticipated unfavorable market regimes. We highlight the statistical jump model (JM) for market regime identification, a recently developed robust model that distinguishes itself from traditional Markov-switching models by enhancing regime persistence through a jump penalty applied at each state transition. Our JM utilizes a feature set comprising risk and return measures derived solely from the return series, with the optimal jump penalty selected through a time-series cross-validation method that directly optimizes strategy performance. Our empirical analysis evaluates the realistic out-of-sample performance of various strategies on major equity indices from the US, Germany, and Japan from 1990 to 2023, in the presence of transaction costs and trading delays. The results demonstrate the consistent outperformance of the JM-guided strategy in reducing risk metrics such as volatility and maximum drawdown, and enhancing risk-adjusted returns like the Sharpe ratio, when compared to both hidden Markov model-guided strategy and the buy-and-hold strategy. These findings underline the enhanced persistence, practicality, and versatility of strategies utilizing JMs for regime-switching signals. ...

February 7, 2024 · 2 min · Research Team

Quantum Computational Algorithms for Derivative Pricing and Credit Risk in a Regime Switching Economy

Quantum Computational Algorithms for Derivative Pricing and Credit Risk in a Regime Switching Economy ArXiv ID: 2311.00825 “View on arXiv” Authors: Unknown Abstract Quantum computers are not yet up to the task of providing computational advantages for practical stochastic diffusion models commonly used by financial analysts. In this paper we introduce a class of stochastic processes that are both realistic in terms of mimicking financial market risks as well as more amenable to potential quantum computational advantages. The type of models we study are based on a regime switching volatility model driven by a Markov chain with observable states. The basic model features a Geometric Brownian Motion with drift and volatility parameters determined by the finite states of a Markov chain. We study algorithms to estimate credit risk and option pricing on a gate-based quantum computer. These models bring us closer to realistic market settings, and therefore quantum computing closer the realm of practical applications. ...

November 1, 2023 · 2 min · Research Team