false

Application of Deep Learning for Factor Timing in Asset Management

Application of Deep Learning for Factor Timing in Asset Management ArXiv ID: 2404.18017 “View on arXiv” Authors: Unknown Abstract The paper examines the performance of regression models (OLS linear regression, Ridge regression, Random Forest, and Fully-connected Neural Network) on the prediction of CMA (Conservative Minus Aggressive) factor premium and the performance of factor timing investment with them. Out-of-sample R-squared shows that more flexible models have better performance in explaining the variance in factor premium of the unseen period, and the back testing affirms that the factor timing based on more flexible models tends to over perform the ones with linear models. However, for flexible models like neural networks, the optimal weights based on their prediction tend to be unstable, which can lead to high transaction costs and market impacts. We verify that tilting down the rebalance frequency according to the historical optimal rebalancing scheme can help reduce the transaction costs. ...

April 27, 2024 · 2 min · Research Team

A Two-Step Longstaff Schwartz Monte Carlo Approach to Game Option Pricing

A Two-Step Longstaff Schwartz Monte Carlo Approach to Game Option Pricing ArXiv ID: 2401.08093 “View on arXiv” Authors: Unknown Abstract We proposed a two-step Longstaff Schwartz Monte Carlo (LSMC) method with two regression models fitted at each time step to price game options. Although the original LSMC can be used to price game options with an enlarged range of path in regression and a modified cashflow updating rule, we identified a drawback of such approach, which motivated us to propose our approach. We implemented numerical examples with benchmarks using binomial tree and numerical PDE, and it showed that our method produces more reliable results comparing to the original LSMC. ...

January 16, 2024 · 2 min · Research Team

Integrating feature selection and regression methods with technical indicators for predicting Apple Inc. stock prices

Integrating feature selection and regression methods with technical indicators for predicting Apple Inc. stock prices ArXiv ID: 2310.09903 “View on arXiv” Authors: Unknown Abstract Stock price prediction is influenced by a variety of factors, including technical indicators, which makes Feature selection crucial for identifying the most relevant predictors. This study examines the impact of feature selection on stock price prediction accuracy using technical indicators. A total of 123 technical indicators and 10 regression models were evaluated using 13 years of Apple Inc. data. The primary goal is to identify the best combination of indicators and models for improved forecasting. The results show that a 3-day time window provides the highest prediction accuracy. Model performance was assessed using five error-based metrics. Among the models, Linear Regression and Ridge Regression achieved the best overall performance, each with a Mean Squared Error (MSE) of 0.00025. Applying feature selection significantly improved model accuracy. For example, the Multi-layered Perceptron Regression using Forward Selection improved by 56.47% over its baseline version. Support Vector Regression improved by 67.42%, and Linear Regression showed a 76.7% improvement when combined with Forward Selection. Ridge Regression also demonstrated a 72.82% enhancement. Additionally, Decision Tree, K-Nearest Neighbor, and Random Forest models showed varying levels of improvement when used with Backward Selection. The most effective technical indicators for stock price prediction were found to be Squeeze_pro, Percentage Price Oscillator, Thermo, Decay, Archer On-Balance Volume, Bollinger Bands, Squeeze, and Ichimoku. Overall, the study highlights that combining selected technical indicators with appropriate regression models can significantly enhance the accuracy and efficiency of stock price predictions. ...

October 15, 2023 · 3 min · Research Team