false

Alpha-R1: Alpha Screening with LLM Reasoning via Reinforcement Learning

Alpha-R1: Alpha Screening with LLM Reasoning via Reinforcement Learning ArXiv ID: 2512.23515 “View on arXiv” Authors: Zuoyou Jiang, Li Zhao, Rui Sun, Ruohan Sun, Zhongjian Li, Jing Li, Daxin Jiang, Zuo Bai, Cheng Hua Abstract Signal decay and regime shifts pose recurring challenges for data-driven investment strategies in non-stationary markets. Conventional time-series and machine learning approaches, which rely primarily on historical correlations, often struggle to generalize when the economic environment changes. While large language models (LLMs) offer strong capabilities for processing unstructured information, their potential to support quantitative factor screening through explicit economic reasoning remains underexplored. Existing factor-based methods typically reduce alphas to numerical time series, overlooking the semantic rationale that determines when a factor is economically relevant. We propose Alpha-R1, an 8B-parameter reasoning model trained via reinforcement learning for context-aware alpha screening. Alpha-R1 reasons over factor logic and real-time news to evaluate alpha relevance under changing market conditions, selectively activating or deactivating factors based on contextual consistency. Empirical results across multiple asset pools show that Alpha-R1 consistently outperforms benchmark strategies and exhibits improved robustness to alpha decay. The full implementation and resources are available at https://github.com/FinStep-AI/Alpha-R1. ...

December 29, 2025 · 2 min · Research Team

Adaptive Partitioning and Learning for Stochastic Control of Diffusion Processes

Adaptive Partitioning and Learning for Stochastic Control of Diffusion Processes ArXiv ID: 2512.14991 “View on arXiv” Authors: Hanqing Jin, Renyuan Xu, Yanzhao Yang Abstract We study reinforcement learning for controlled diffusion processes with unbounded continuous state spaces, bounded continuous actions, and polynomially growing rewards: settings that arise naturally in finance, economics, and operations research. To overcome the challenges of continuous and high-dimensional domains, we introduce a model-based algorithm that adaptively partitions the joint state-action space. The algorithm maintains estimators of drift, volatility, and rewards within each partition, refining the discretization whenever estimation bias exceeds statistical confidence. This adaptive scheme balances exploration and approximation, enabling efficient learning in unbounded domains. Our analysis establishes regret bounds that depend on the problem horizon, state dimension, reward growth order, and a newly defined notion of zooming dimension tailored to unbounded diffusion processes. The bounds recover existing results for bounded settings as a special case, while extending theoretical guarantees to a broader class of diffusion-type problems. Finally, we validate the effectiveness of our approach through numerical experiments, including applications to high-dimensional problems such as multi-asset mean-variance portfolio selection. ...

December 17, 2025 · 2 min · Research Team

Interpretable Hypothesis-Driven Trading:A Rigorous Walk-Forward Validation Framework for Market Microstructure Signals

Interpretable Hypothesis-Driven Trading:A Rigorous Walk-Forward Validation Framework for Market Microstructure Signals ArXiv ID: 2512.12924 “View on arXiv” Authors: Gagan Deep, Akash Deep, William Lamptey Abstract We develop a rigorous walk-forward validation framework for algorithmic trading designed to mitigate overfitting and lookahead bias. Our methodology combines interpretable hypothesis-driven signal generation with reinforcement learning and strict out-of-sample testing. The framework enforces strict information set discipline, employs rolling window validation across 34 independent test periods, maintains complete interpretability through natural language hypothesis explanations, and incorporates realistic transaction costs and position constraints. Validating five market microstructure patterns across 100 US equities from 2015 to 2024, the system yields modest annualized returns (0.55%, Sharpe ratio 0.33) with exceptional downside protection (maximum drawdown -2.76%) and market-neutral characteristics (beta = 0.058). Performance exhibits strong regime dependence, generating positive returns during high-volatility periods (0.60% quarterly, 2020-2024) while underperforming in stable markets (-0.16%, 2015-2019). We report statistically insignificant aggregate results (p-value 0.34) to demonstrate a reproducible, honest validation protocol that prioritizes interpretability and extends naturally to advanced hypothesis generators, including large language models. The key empirical finding reveals that daily OHLCV-based microstructure signals require elevated information arrival and trading activity to function effectively. The framework provides complete mathematical specifications and open-source implementation, establishing a template for rigorous trading system evaluation that addresses the reproducibility crisis in quantitative finance research. For researchers, practitioners, and regulators, this work demonstrates that interpretable algorithmic trading strategies can be rigorously validated without sacrificing transparency or regulatory compliance. ...

December 15, 2025 · 2 min · Research Team

PyFi: Toward Pyramid-like Financial Image Understanding for VLMs via Adversarial Agents

PyFi: Toward Pyramid-like Financial Image Understanding for VLMs via Adversarial Agents ArXiv ID: 2512.14735 “View on arXiv” Authors: Yuqun Zhang, Yuxuan Zhao, Sijia Chen Abstract This paper proposes PyFi, a novel framework for pyramid-like financial image understanding that enables vision language models (VLMs) to reason through question chains in a progressive, simple-to-complex manner. At the core of PyFi is PyFi-600K, a dataset comprising 600K financial question-answer pairs organized into a reasoning pyramid: questions at the base require only basic perception, while those toward the apex demand increasing levels of capability in financial visual understanding and expertise. This data is scalable because it is synthesized without human annotations, using PyFi-adv, a multi-agent adversarial mechanism under the Monte Carlo Tree Search (MCTS) paradigm, in which, for each image, a challenger agent competes with a solver agent by generating question chains that progressively probe deeper capability levels in financial visual reasoning. Leveraging this dataset, we present fine-grained, hierarchical, and comprehensive evaluations of advanced VLMs in the financial domain. Moreover, fine-tuning Qwen2.5-VL-3B and Qwen2.5-VL-7B on the pyramid-structured question chains enables these models to answer complex financial questions by decomposing them into sub-questions with gradually increasing reasoning demands, yielding average accuracy improvements of 19.52% and 8.06%, respectively, on the dataset. All resources of code, dataset and models are available at: https://github.com/AgenticFinLab/PyFi . ...

December 11, 2025 · 2 min · Research Team

Continuous-time reinforcement learning for optimal switching over multiple regimes

Continuous-time reinforcement learning for optimal switching over multiple regimes ArXiv ID: 2512.04697 “View on arXiv” Authors: Yijie Huang, Mengge Li, Xiang Yu, Zhou Zhou Abstract This paper studies the continuous-time reinforcement learning (RL) for optimal switching problems across multiple regimes. We consider a type of exploratory formulation under entropy regularization where the agent randomizes both the timing of switches and the selection of regimes through the generator matrix of an associated continuous-time finite-state Markov chain. We establish the well-posedness of the associated system of Hamilton-Jacobi-Bellman (HJB) equations and provide a characterization of the optimal policy. The policy improvement and the convergence of the policy iterations are rigorously established by analyzing the system of equations. We also show the convergence of the value function in the exploratory formulation towards the value function in the classical formulation as the temperature parameter vanishes. Finally, a reinforcement learning algorithm is devised and implemented by invoking the policy evaluation based on the martingale characterization. Our numerical examples with the aid of neural networks illustrate the effectiveness of the proposed RL algorithm. ...

December 4, 2025 · 2 min · Research Team

Hybrid LSTM and PPO Networks for Dynamic Portfolio Optimization

Hybrid LSTM and PPO Networks for Dynamic Portfolio Optimization ArXiv ID: 2511.17963 “View on arXiv” Authors: Jun Kevin, Pujianto Yugopuspito Abstract This paper introduces a hybrid framework for portfolio optimization that fuses Long Short-Term Memory (LSTM) forecasting with a Proximal Policy Optimization (PPO) reinforcement learning strategy. The proposed system leverages the predictive power of deep recurrent networks to capture temporal dependencies, while the PPO agent adaptively refines portfolio allocations in continuous action spaces, allowing the system to anticipate trends while adjusting dynamically to market shifts. Using multi-asset datasets covering U.S. and Indonesian equities, U.S. Treasuries, and major cryptocurrencies from January 2018 to December 2024, the model is evaluated against several baselines, including equal-weight, index-style, and single-model variants (LSTM-only and PPO-only). The framework’s performance is benchmarked against equal-weighted, index-based, and single-model approaches (LSTM-only and PPO-only) using annualized return, volatility, Sharpe ratio, and maximum drawdown metrics, each adjusted for transaction costs. The results indicate that the hybrid architecture delivers higher returns and stronger resilience under non-stationary market regimes, suggesting its promise as a robust, AI-driven framework for dynamic portfolio optimization. ...

November 22, 2025 · 2 min · Research Team

Reinforcement Learning for Portfolio Optimization with a Financial Goal and Defined Time Horizons

Reinforcement Learning for Portfolio Optimization with a Financial Goal and Defined Time Horizons ArXiv ID: 2511.18076 “View on arXiv” Authors: Fermat Leukam, Rock Stephane Koffi, Prudence Djagba Abstract This research proposes an enhancement to the innovative portfolio optimization approach using the G-Learning algorithm, combined with parametric optimization via the GIRL algorithm (G-learning approach to the setting of Inverse Reinforcement Learning) as presented by. The goal is to maximize portfolio value by a target date while minimizing the investor’s periodic contributions. Our model operates in a highly volatile market with a well-diversified portfolio, ensuring a low-risk level for the investor, and leverages reinforcement learning to dynamically adjust portfolio positions over time. Results show that we improved the Sharpe Ratio from 0.42, as suggested by recent studies using the same approach, to a value of 0.483 a notable achievement in highly volatile markets with diversified portfolios. The comparison between G-Learning and GIRL reveals that while GIRL optimizes the reward function parameters (e.g., lambda = 0.0012 compared to 0.002), its impact on portfolio performance remains marginal. This suggests that reinforcement learning methods, like G-Learning, already enable robust optimization. This research contributes to the growing development of reinforcement learning applications in financial decision-making, demonstrating that probabilistic learning algorithms can effectively align portfolio management strategies with investor needs. ...

November 22, 2025 · 2 min · Research Team

Reinforcement Learning in Queue-Reactive Models: Application to Optimal Execution

Reinforcement Learning in Queue-Reactive Models: Application to Optimal Execution ArXiv ID: 2511.15262 “View on arXiv” Authors: Tomas Espana, Yadh Hafsi, Fabrizio Lillo, Edoardo Vittori Abstract We investigate the use of Reinforcement Learning for the optimal execution of meta-orders, where the objective is to execute incrementally large orders while minimizing implementation shortfall and market impact over an extended period of time. Departing from traditional parametric approaches to price dynamics and impact modeling, we adopt a model-free, data-driven framework. Since policy optimization requires counterfactual feedback that historical data cannot provide, we employ the Queue-Reactive Model to generate realistic and tractable limit order book simulations that encompass transient price impact, and nonlinear and dynamic order flow responses. Methodologically, we train a Double Deep Q-Network agent on a state space comprising time, inventory, price, and depth variables, and evaluate its performance against established benchmarks. Numerical simulation results show that the agent learns a policy that is both strategic and tactical, adapting effectively to order book conditions and outperforming standard approaches across multiple training configurations. These findings provide strong evidence that model-free Reinforcement Learning can yield adaptive and robust solutions to the optimal execution problem. ...

November 19, 2025 · 2 min · Research Team

Cryptocurrency Portfolio Management with Reinforcement Learning: Soft Actor--Critic and Deep Deterministic Policy Gradient Algorithms

Cryptocurrency Portfolio Management with Reinforcement Learning: Soft Actor–Critic and Deep Deterministic Policy Gradient Algorithms ArXiv ID: 2511.20678 “View on arXiv” Authors: Kamal Paykan Abstract This paper proposes a reinforcement learning–based framework for cryptocurrency portfolio management using the Soft Actor–Critic (SAC) and Deep Deterministic Policy Gradient (DDPG) algorithms. Traditional portfolio optimization methods often struggle to adapt to the highly volatile and nonlinear dynamics of cryptocurrency markets. To address this, we design an agent that learns continuous trading actions directly from historical market data through interaction with a simulated trading environment. The agent optimizes portfolio weights to maximize cumulative returns while minimizing downside risk and transaction costs. Experimental evaluations on multiple cryptocurrencies demonstrate that the SAC and DDPG agents outperform baseline strategies such as equal-weighted and mean–variance portfolios. The SAC algorithm, with its entropy-regularized objective, shows greater stability and robustness in noisy market conditions compared to DDPG. These results highlight the potential of deep reinforcement learning for adaptive and data-driven portfolio management in cryptocurrency markets. ...

November 16, 2025 · 2 min · Research Team

LiveTradeBench: Seeking Real-World Alpha with Large Language Models

LiveTradeBench: Seeking Real-World Alpha with Large Language Models ArXiv ID: 2511.03628 “View on arXiv” Authors: Haofei Yu, Fenghai Li, Jiaxuan You Abstract Large language models (LLMs) achieve strong performance across benchmarks–from knowledge quizzes and math reasoning to web-agent tasks–but these tests occur in static settings, lacking real dynamics and uncertainty. Consequently, they evaluate isolated reasoning or problem-solving rather than decision-making under uncertainty. To address this, we introduce LiveTradeBench, a live trading environment for evaluating LLM agents in realistic and evolving markets. LiveTradeBench follows three design principles: (i) Live data streaming of market prices and news, eliminating dependence on offline backtesting and preventing information leakage while capturing real-time uncertainty; (ii) a portfolio-management abstraction that extends control from single-asset actions to multi-asset allocation, integrating risk management and cross-asset reasoning; and (iii) multi-market evaluation across structurally distinct environments–U.S. stocks and Polymarket prediction markets–differing in volatility, liquidity, and information flow. At each step, an agent observes prices, news, and its portfolio, then outputs percentage allocations that balance risk and return. Using LiveTradeBench, we run 50-day live evaluations of 21 LLMs across families. Results show that (1) high LMArena scores do not imply superior trading outcomes; (2) models display distinct portfolio styles reflecting risk appetite and reasoning dynamics; and (3) some LLMs effectively leverage live signals to adapt decisions. These findings expose a gap between static evaluation and real-world competence, motivating benchmarks that test sequential decision making and consistency under live uncertainty. ...

November 5, 2025 · 2 min · Research Team