false

Exploring the Synergy of Quantitative Factors and Newsflow Representations from Large Language Models for Stock Return Prediction

Exploring the Synergy of Quantitative Factors and Newsflow Representations from Large Language Models for Stock Return Prediction ArXiv ID: 2510.15691 “View on arXiv” Authors: Tian Guo, Emmanuel Hauptmann Abstract In quantitative investing, return prediction supports various tasks, including stock selection, portfolio optimization, and risk management. Quantitative factors, such as valuation, quality, and growth, capture various characteristics of stocks. Unstructured data, like news and transcripts, has attracted growing attention, driven by recent advances in large language models (LLMs). This paper examines effective methods for leveraging multimodal factors and newsflow in return prediction and stock selection. First, we introduce a fusion learning framework to learn a unified representation from factors and newsflow representations generated by an LLM. Within this framework, we compare three methods of different architectural complexities: representation combination, representation summation, and attentive representations. Next, building on the limitation of fusion learning observed in empirical comparison, we explore the mixture model that adaptively combines predictions made by single modalities and their fusion. To mitigate the training instability of the mixture model, we introduce a decoupled training approach with theoretical insights. Finally, our experiments on real investment universes yield several insights into effective multimodal modeling of factors and news for stock return prediction and selection. ...

October 17, 2025 · 2 min · Research Team

Detecting Multilevel Manipulation from Limit Order Book via Cascaded Contrastive Representation Learning

Detecting Multilevel Manipulation from Limit Order Book via Cascaded Contrastive Representation Learning ArXiv ID: 2508.17086 “View on arXiv” Authors: Yushi Lin, Peng Yang Abstract Trade-based manipulation (TBM) undermines the fairness and stability of financial markets drastically. Spoofing, one of the most covert and deceptive TBM strategies, exhibits complex anomaly patterns across multilevel prices, while often being simplified as a single-level manipulation. These patterns are usually concealed within the rich, hierarchical information of the Limit Order Book (LOB), which is challenging to leverage due to high dimensionality and noise. To address this, we propose a representation learning framework combining a cascaded LOB representation architecture with supervised contrastive learning. Extensive experiments demonstrate that our framework consistently improves detection performance across diverse models, with Transformer-based architectures achieving state-of-the-art results. In addition, we conduct systematic analyses and ablation studies to investigate multilevel manipulation and the contributions of key components for detection, offering broader insights into representation learning and anomaly detection for complex time series data. ...

August 23, 2025 · 2 min · Research Team

NGAT: A Node-level Graph Attention Network for Long-term Stock Prediction

NGAT: A Node-level Graph Attention Network for Long-term Stock Prediction ArXiv ID: 2507.02018 “View on arXiv” Authors: Yingjie Niu, Mingchuan Zhao, Valerio Poti, Ruihai Dong Abstract Graph representation learning methods have been widely adopted in financial applications to enhance company representations by leveraging inter-firm relationships. However, current approaches face three key challenges: (1) The advantages of relational information are obscured by limitations in downstream task designs; (2) Existing graph models specifically designed for stock prediction often suffer from excessive complexity and poor generalization; (3) Experience-based construction of corporate relationship graphs lacks effective comparison of different graph structures. To address these limitations, we propose a long-term stock prediction task and develop a Node-level Graph Attention Network (NGAT) specifically tailored for corporate relationship graphs. Furthermore, we experimentally demonstrate the limitations of existing graph comparison methods based on model downstream task performance. Experimental results across two datasets consistently demonstrate the effectiveness of our proposed task and model. The project is publicly available on GitHub to encourage reproducibility and future research. ...

July 2, 2025 · 2 min · Research Team

The Evolution of Alpha in Finance Harnessing Human Insight and LLM Agents

The Evolution of Alpha in Finance Harnessing Human Insight and LLM Agents ArXiv ID: 2505.14727 “View on arXiv” Authors: Mohammad Rubyet Islam Abstract The pursuit of alpha returns that exceed market benchmarks has undergone a profound transformation, evolving from intuition-driven investing to autonomous, AI powered systems. This paper introduces a comprehensive five stage taxonomy that traces this progression across manual strategies, statistical models, classical machine learning, deep learning, and agentic architectures powered by large language models (LLMs). Unlike prior surveys focused narrowly on modeling techniques, this review adopts a system level lens, integrating advances in representation learning, multimodal data fusion, and tool augmented LLM agents. The strategic shift from static predictors to contextaware financial agents capable of real time reasoning, scenario simulation, and cross modal decision making is emphasized. Key challenges in interpretability, data fragility, governance, and regulatory compliance areas critical to production deployment are examined. The proposed taxonomy offers a unified framework for evaluating maturity, aligning infrastructure, and guiding the responsible development of next generation alpha systems. ...

May 20, 2025 · 2 min · Research Team

Contrastive Learning of Asset Embeddings from Financial Time Series

Contrastive Learning of Asset Embeddings from Financial Time Series ArXiv ID: 2407.18645 “View on arXiv” Authors: Unknown Abstract Representation learning has emerged as a powerful paradigm for extracting valuable latent features from complex, high-dimensional data. In financial domains, learning informative representations for assets can be used for tasks like sector classification, and risk management. However, the complex and stochastic nature of financial markets poses unique challenges. We propose a novel contrastive learning framework to generate asset embeddings from financial time series data. Our approach leverages the similarity of asset returns over many subwindows to generate informative positive and negative samples, using a statistical sampling strategy based on hypothesis testing to address the noisy nature of financial data. We explore various contrastive loss functions that capture the relationships between assets in different ways to learn a discriminative representation space. Experiments on real-world datasets demonstrate the effectiveness of the learned asset embeddings on benchmark industry classification and portfolio optimization tasks. In each case our novel approaches significantly outperform existing baselines highlighting the potential for contrastive learning to capture meaningful and actionable relationships in financial data. ...

July 26, 2024 · 2 min · Research Team

Portfolio Selection via Topological Data Analysis

Portfolio Selection via Topological Data Analysis ArXiv ID: 2308.07944 “View on arXiv” Authors: Unknown Abstract Portfolio management is an essential part of investment decision-making. However, traditional methods often fail to deliver reasonable performance. This problem stems from the inability of these methods to account for the unique characteristics of multivariate time series data from stock markets. We present a two-stage method for constructing an investment portfolio of common stocks. The method involves the generation of time series representations followed by their subsequent clustering. Our approach utilizes features based on Topological Data Analysis (TDA) for the generation of representations, allowing us to elucidate the topological structure within the data. Experimental results show that our proposed system outperforms other methods. This superior performance is consistent over different time frames, suggesting the viability of TDA as a powerful tool for portfolio selection. ...

August 15, 2023 · 2 min · Research Team

Company2Vec -- German Company Embeddings based on Corporate Websites

Company2Vec – German Company Embeddings based on Corporate Websites ArXiv ID: 2307.09332 “View on arXiv” Authors: Unknown Abstract With Company2Vec, the paper proposes a novel application in representation learning. The model analyzes business activities from unstructured company website data using Word2Vec and dimensionality reduction. Company2Vec maintains semantic language structures and thus creates efficient company embeddings in fine-granular industries. These semantic embeddings can be used for various applications in banking. Direct relations between companies and words allow semantic business analytics (e.g. top-n words for a company). Furthermore, industry prediction is presented as a supervised learning application and evaluation method. The vectorized structure of the embeddings allows measuring companies similarities with the cosine distance. Company2Vec hence offers a more fine-grained comparison of companies than the standard industry labels (NACE). This property is relevant for unsupervised learning tasks, such as clustering. An alternative industry segmentation is shown with k-means clustering on the company embeddings. Finally, this paper proposes three algorithms for (1) firm-centric, (2) industry-centric and (3) portfolio-centric peer-firm identification. ...

July 18, 2023 · 2 min · Research Team