false

Kernel Learning for Mean-Variance Trading Strategies

Kernel Learning for Mean-Variance Trading Strategies ArXiv ID: 2507.10701 “View on arXiv” Authors: Owen Futter, Nicola Muca Cirone, Blanka Horvath Abstract In this article, we develop a kernel-based framework for constructing dynamic, pathdependent trading strategies under a mean-variance optimisation criterion. Building on the theoretical results of (Muca Cirone and Salvi, 2025), we parameterise trading strategies as functions in a reproducing kernel Hilbert space (RKHS), enabling a flexible and non-Markovian approach to optimal portfolio problems. We compare this with the signature-based framework of (Futter, Horvath, Wiese, 2023) and demonstrate that both significantly outperform classical Markovian methods when the asset dynamics or predictive signals exhibit temporal dependencies for both synthetic and market-data examples. Using kernels in this context provides significant modelling flexibility, as the choice of feature embedding can range from randomised signatures to the final layers of neural network architectures. Crucially, our framework retains closed-form solutions and provides an alternative to gradient-based optimisation. ...

July 14, 2025 · 2 min · Research Team

A path-dependent PDE solver based on signature kernels

A path-dependent PDE solver based on signature kernels ArXiv ID: 2403.11738 “View on arXiv” Authors: Unknown Abstract We develop a provably convergent kernel-based solver for path-dependent PDEs (PPDEs). Our numerical scheme leverages signature kernels, a recently introduced class of kernels on path-space. Specifically, we solve an optimal recovery problem by approximating the solution of a PPDE with an element of minimal norm in the signature reproducing kernel Hilbert space (RKHS) constrained to satisfy the PPDE at a finite collection of collocation paths. In the linear case, we show that the optimisation has a unique closed-form solution expressed in terms of signature kernel evaluations at the collocation paths. We prove consistency of the proposed scheme, guaranteeing convergence to the PPDE solution as the number of collocation points increases. Finally, several numerical examples are presented, in particular in the context of option pricing under rough volatility. Our numerical scheme constitutes a valid alternative to the ubiquitous Monte Carlo methods. ...

March 18, 2024 · 2 min · Research Team