false

Learning from Expert Factors: Trajectory-level Reward Shaping for Formulaic Alpha Mining

Learning from Expert Factors: Trajectory-level Reward Shaping for Formulaic Alpha Mining ArXiv ID: 2507.20263 “View on arXiv” Authors: Junjie Zhao, Chengxi Zhang, Chenkai Wang, Peng Yang Abstract Reinforcement learning (RL) has successfully automated the complex process of mining formulaic alpha factors, for creating interpretable and profitable investment strategies. However, existing methods are hampered by the sparse rewards given the underlying Markov Decision Process. This inefficiency limits the exploration of the vast symbolic search space and destabilizes the training process. To address this, Trajectory-level Reward Shaping (TLRS), a novel reward shaping method, is proposed. TLRS provides dense, intermediate rewards by measuring the subsequence-level similarity between partially generated expressions and a set of expert-designed formulas. Furthermore, a reward centering mechanism is introduced to reduce training variance. Extensive experiments on six major Chinese and U.S. stock indices show that TLRS significantly improves the predictive power of mined factors, boosting the Rank Information Coefficient by 9.29% over existing potential-based shaping algorithms. Notably, TLRS achieves a major leap in computational efficiency by reducing its time complexity with respect to the feature dimension from linear to constant, which is a significant improvement over distance-based baselines. ...

July 27, 2025 · 2 min · Research Team

Reinforcement Learning Pair Trading: A Dynamic Scaling approach

Reinforcement Learning Pair Trading: A Dynamic Scaling approach ArXiv ID: 2407.16103 “View on arXiv” Authors: Unknown Abstract Cryptocurrency is a cryptography-based digital asset with extremely volatile prices. Around USD 70 billion worth of cryptocurrency is traded daily on exchanges. Trading cryptocurrency is difficult due to the inherent volatility of the crypto market. This study investigates whether Reinforcement Learning (RL) can enhance decision-making in cryptocurrency algorithmic trading compared to traditional methods. In order to address this question, we combined reinforcement learning with a statistical arbitrage trading technique, pair trading, which exploits the price difference between statistically correlated assets. We constructed RL environments and trained RL agents to determine when and how to trade pairs of cryptocurrencies. We developed new reward shaping and observation/action spaces for reinforcement learning. We performed experiments with the developed reinforcement learner on pairs of BTC-GBP and BTC-EUR data separated by 1 min intervals (n=263,520). The traditional non-RL pair trading technique achieved an annualized profit of 8.33%, while the proposed RL-based pair trading technique achieved annualized profits from 9.94% to 31.53%, depending upon the RL learner. Our results show that RL can significantly outperform manual and traditional pair trading techniques when applied to volatile markets such as~cryptocurrencies. ...

July 23, 2024 · 2 min · Research Team