false

Continuous Risk Factor Models: Analyzing Asset Correlations through Energy Distance

Continuous Risk Factor Models: Analyzing Asset Correlations through Energy Distance ArXiv ID: 2410.23447 “View on arXiv” Authors: Unknown Abstract This paper introduces a novel approach to financial risk analysis that does not rely on traditional price and market data, instead using market news to model assets as distributions over a metric space of risk factors. By representing asset returns as integrals over the scalar field of these risk factors, we derive the covariance structure between asset returns. Utilizing encoder-only language models to embed this news data, we explore the relationships between asset return distributions through the concept of Energy Distance, establishing connections between distributional differences and excess returns co-movements. This data-agnostic approach provides new insights into portfolio diversification, risk management, and the construction of hedging strategies. Our findings have significant implications for both theoretical finance and practical risk management, offering a more robust framework for modelling complex financial systems without depending on conventional market data. ...

October 30, 2024 · 2 min · Research Team

Hedge Fund Portfolio Construction Using PolyModel Theory and iTransformer

Hedge Fund Portfolio Construction Using PolyModel Theory and iTransformer ArXiv ID: 2408.03320 “View on arXiv” Authors: Unknown Abstract When constructing portfolios, a key problem is that a lot of financial time series data are sparse, making it challenging to apply machine learning methods. Polymodel theory can solve this issue and demonstrate superiority in portfolio construction from various aspects. To implement the PolyModel theory for constructing a hedge fund portfolio, we begin by identifying an asset pool, utilizing over 10,000 hedge funds for the past 29 years’ data. PolyModel theory also involves choosing a wide-ranging set of risk factors, which includes various financial indices, currencies, and commodity prices. This comprehensive selection mirrors the complexities of the real-world environment. Leveraging on the PolyModel theory, we create quantitative measures such as Long-term Alpha, Long-term Ratio, and SVaR. We also use more classical measures like the Sharpe ratio or Morningstar’s MRAR. To enhance the performance of the constructed portfolio, we also employ the latest deep learning techniques (iTransformer) to capture the upward trend, while efficiently controlling the downside, using all the features. The iTransformer model is specifically designed to address the challenges in high-dimensional time series forecasting and could largely improve our strategies. More precisely, our strategies achieve better Sharpe ratio and annualized return. The above process enables us to create multiple portfolio strategies aiming for high returns and low risks when compared to various benchmarks. ...

August 6, 2024 · 2 min · Research Team

Unveiling Nonlinear Dynamics in Catastrophe Bond Pricing: A Machine Learning Perspective

Unveiling Nonlinear Dynamics in Catastrophe Bond Pricing: A Machine Learning Perspective ArXiv ID: 2405.00697 “View on arXiv” Authors: Unknown Abstract This paper explores the implications of using machine learning models in the pricing of catastrophe (CAT) bonds. By integrating advanced machine learning techniques, our approach uncovers nonlinear relationships and complex interactions between key risk factors and CAT bond spreads – dynamics that are often overlooked by traditional linear regression models. Using primary market CAT bond transaction records between January 1999 and March 2021, our findings demonstrate that machine learning models not only enhance the accuracy of CAT bond pricing but also provide a deeper understanding of how various risk factors interact and influence bond prices in a nonlinear way. These findings suggest that investors and issuers can benefit from incorporating machine learning to better capture the intricate interplay between risk factors when pricing CAT bonds. The results also highlight the potential for machine learning models to refine our understanding of asset pricing in markets characterized by complex risk structures. ...

April 10, 2024 · 2 min · Research Team

Differential Quantile-Based Sensitivity in Discontinuous Models

Differential Quantile-Based Sensitivity in Discontinuous Models ArXiv ID: 2310.06151 “View on arXiv” Authors: Unknown Abstract Differential sensitivity measures provide valuable tools for interpreting complex computational models used in applications ranging from simulation to algorithmic prediction. Taking the derivative of the model output in direction of a model parameter can reveal input-output relations and the relative importance of model parameters and input variables. Nonetheless, it is unclear how such derivatives should be taken when the model function has discontinuities and/or input variables are discrete. We present a general framework for addressing such problems, considering derivatives of quantile-based output risk measures, with respect to distortions to random input variables (risk factors), which impact the model output through step-functions. We prove that, subject to weak technical conditions, the derivatives are well-defined and derive the corresponding formulas. We apply our results to the sensitivity analysis of compound risk models and to a numerical study of reinsurance credit risk in a multi-line insurance portfolio. ...

October 9, 2023 · 2 min · Research Team

Econometric Model Using Arbitrage Pricing Theory and Quantile Regression to Estimate the Risk Factors Driving Crude Oil Returns

Econometric Model Using Arbitrage Pricing Theory and Quantile Regression to Estimate the Risk Factors Driving Crude Oil Returns ArXiv ID: 2309.13096 “View on arXiv” Authors: Unknown Abstract This work adopts a novel approach to determine the risk and return of crude oil stocks by employing Arbitrage Pricing Theory (APT) and Quantile Regression (QR).The APT identifies the underlying risk factors likely to impact crude oil returns.Subsequently, QR estimates the relationship between the factors and the returns across different quantiles of the distribution. The West Texas Intermediate (WTI) crude oil price is used in this study as a benchmark for crude oil prices. WTI price fluctuations can have a significant impact on the performance of crude oil stocks and, subsequently, the global economy.To determine the proposed models stability, various statistical measures are used in this study.The results show that changes in WTI returns can have varying effects depending on market conditions and levels of volatility. The study highlights the impact of structural discontinuities on returns, which can be caused by changes in the global economy and the demand for crude oil.The inclusion of pandemic, geopolitical, and inflation-related explanatory variables add uniqueness to this study as it considers current global events that can affect crude oil returns.Findings show that the key factors that pose major risks to returns are industrial production, inflation, the global price of energy, the shape of the yield curve, and global economic policy uncertainty.This implies that while making investing decisions in WTI futures, investors should pay particular attention to these elements ...

September 22, 2023 · 2 min · Research Team

Model-Free Market Risk Hedging Using Crowding Networks

Model-Free Market Risk Hedging Using Crowding Networks ArXiv ID: 2306.08105 “View on arXiv” Authors: Unknown Abstract Crowding is widely regarded as one of the most important risk factors in designing portfolio strategies. In this paper, we analyze stock crowding using network analysis of fund holdings, which is used to compute crowding scores for stocks. These scores are used to construct costless long-short portfolios, computed in a distribution-free (model-free) way and without using any numerical optimization, with desirable properties of hedge portfolios. More specifically, these long-short portfolios provide protection for both small and large market price fluctuations, due to their negative correlation with the market and positive convexity as a function of market returns. By adding our long-short portfolio to a baseline portfolio such as a traditional 60/40 portfolio, our method provides an alternative way to hedge portfolio risk including tail risk, which does not require costly option-based strategies or complex numerical optimization. The total cost of such hedging amounts to the total cost of rebalancing the hedge portfolio. ...

June 13, 2023 · 2 min · Research Team

ETF Risk Models

ETF Risk Models ArXiv ID: 2110.07138 “View on arXiv” Authors: Unknown Abstract We discuss how to build ETF risk models. Our approach anchors on i) first building a multilevel (non-)binary classification/taxonomy for ETFs, which is utilized in order to define the risk factors, and ii) then building the risk models based on these risk factors by utilizing the heterotic risk model construction of https://ssrn.com/abstract=2600798 (for binary classifications) or general risk model construction of https://ssrn.com/abstract=2722093 (for non-binary classifications). We discuss how to build an ETF taxonomy using ETF constituent data. A multilevel ETF taxonomy can also be constructed by appropriately augmenting and expanding well-built and granular third-party single-level ETF groupings. ...

October 14, 2021 · 2 min · Research Team