false

TradingAgents: Multi-Agents LLM Financial Trading Framework

TradingAgents: Multi-Agents LLM Financial Trading Framework ArXiv ID: 2412.20138 “View on arXiv” Authors: Unknown Abstract Significant progress has been made in automated problem-solving using societies of agents powered by large language models (LLMs). In finance, efforts have largely focused on single-agent systems handling specific tasks or multi-agent frameworks independently gathering data. However, the multi-agent systems’ potential to replicate real-world trading firms’ collaborative dynamics remains underexplored. TradingAgents proposes a novel stock trading framework inspired by trading firms, featuring LLM-powered agents in specialized roles such as fundamental analysts, sentiment analysts, technical analysts, and traders with varied risk profiles. The framework includes Bull and Bear researcher agents assessing market conditions, a risk management team monitoring exposure, and traders synthesizing insights from debates and historical data to make informed decisions. By simulating a dynamic, collaborative trading environment, this framework aims to improve trading performance. Detailed architecture and extensive experiments reveal its superiority over baseline models, with notable improvements in cumulative returns, Sharpe ratio, and maximum drawdown, highlighting the potential of multi-agent LLM frameworks in financial trading. TradingAgents is available at https://github.com/TauricResearch/TradingAgents. ...

December 28, 2024 · 2 min · Research Team

Time Series Feature Redundancy Paradox: An Empirical Study Based on Mortgage Default Prediction

Time Series Feature Redundancy Paradox: An Empirical Study Based on Mortgage Default Prediction ArXiv ID: 2501.00034 “View on arXiv” Authors: Unknown Abstract With the widespread application of machine learning in financial risk management, conventional wisdom suggests that longer training periods and more feature variables contribute to improved model performance. This paper, focusing on mortgage default prediction, empirically discovers a phenomenon that contradicts traditional knowledge: in time series prediction, increased training data timespan and additional non-critical features actually lead to significant deterioration in prediction effectiveness. Using Fannie Mae’s mortgage data, the study compares predictive performance across different time window lengths (2012-2022) and feature combinations, revealing that shorter time windows (such as single-year periods) paired with carefully selected key features yield superior prediction results. The experimental results indicate that extended time spans may introduce noise from historical data and outdated market patterns, while excessive non-critical features interfere with the model’s learning of core default factors. This research not only challenges the traditional “more is better” approach in data modeling but also provides new insights and practical guidance for feature selection and time window optimization in financial risk prediction. ...

December 23, 2024 · 2 min · Research Team

Refining and Robust Backtesting of A Century of Profitable Industry Trends

Refining and Robust Backtesting of A Century of Profitable Industry Trends ArXiv ID: 2412.14361 “View on arXiv” Authors: Unknown Abstract We revisit the long-only trend-following strategy presented in A Century of Profitable Industry Trends by Zarattini and Antonacci, which achieved exceptional historical performance with an 18.2% annualized return and a Sharpe Ratio of 1.39. While the results outperformed benchmarks, practical implementation raises concerns about robustness and evolving market conditions. This study explores modifications addressing reliance on T-bills, alternative fallback allocations, and industry exclusions. Despite attempts to enhance adaptability through momentum signals, parameter optimization, and Walk-Forward Analysis, results reveal persistent challenges. The results highlight challenges in adapting historical strategies to modern markets and offer insights for future trend-following frameworks. ...

December 18, 2024 · 2 min · Research Team

Integrative Analysis of Financial Market Sentiment Using CNN and GRU for Risk Prediction and Alert Systems

Integrative Analysis of Financial Market Sentiment Using CNN and GRU for Risk Prediction and Alert Systems ArXiv ID: 2412.10199 “View on arXiv” Authors: Unknown Abstract This document presents an in-depth examination of stock market sentiment through the integration of Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU), enabling precise risk alerts. The robust feature extraction capability of CNN is utilized to preprocess and analyze extensive network text data, identifying local features and patterns. The extracted feature sequences are then input into the GRU model to understand the progression of emotional states over time and their potential impact on future market sentiment and risk. This approach addresses the order dependence and long-term dependencies inherent in time series data, resulting in a detailed analysis of stock market sentiment and effective early warnings of future risks. ...

December 13, 2024 · 2 min · Research Team

NEAT Algorithm-based Stock Trading Strategy with Multiple Technical Indicators Resonance

NEAT Algorithm-based Stock Trading Strategy with Multiple Technical Indicators Resonance ArXiv ID: 2501.14736 “View on arXiv” Authors: Unknown Abstract In this study, we applied the NEAT (NeuroEvolution of Augmenting Topologies) algorithm to stock trading using multiple technical indicators. Our approach focused on maximizing earning, avoiding risk, and outperforming the Buy & Hold strategy. We used progressive training data and a multi-objective fitness function to guide the evolution of the population towards these objectives. The results of our study showed that the NEAT model achieved similar returns to the Buy & Hold strategy, but with lower risk exposure and greater stability. We also identified some challenges in the training process, including the presence of a large number of unused nodes and connections in the model architecture. In future work, it may be worthwhile to explore ways to improve the NEAT algorithm and apply it to shorter interval data in order to assess the potential impact on performance. ...

December 11, 2024 · 2 min · Research Team

Multiscale Markowitz

Multiscale Markowitz ArXiv ID: 2411.13792 “View on arXiv” Authors: Unknown Abstract Traditional Markowitz portfolio optimization constrains daily portfolio variance to a target value, optimising returns, Sharpe or variance within this constraint. However, this approach overlooks the relationship between variance at different time scales, typically described by $σ(Δt) \propto (Δt)^{“H”}$ where $H$ is the Hurst exponent, most of the time assumed to be (\frac{“1”}{“2”}). This paper introduces a multifrequency optimization framework that allows investors to specify target portfolio variance across a range of frequencies, characterized by a target Hurst exponent $H_{“target”}$, or optimize the portfolio at multiple time scales. By incorporating this scaling behavior, we enable a more nuanced and comprehensive risk management strategy that aligns with investor preferences at various time scales. This approach effectively manages portfolio risk across multiple frequencies and adapts to different market conditions, providing a robust tool for dynamic asset allocation. This overcomes some of the traditional limitations of Markowitz, when it comes to dealing with crashes, regime changes, volatility clustering or multifractality in markets. We illustrate this concept with a toy example and discuss the practical implementation for assets with varying scaling behaviors. ...

November 21, 2024 · 2 min · Research Team

Reinforcement Learning Framework for Quantitative Trading

Reinforcement Learning Framework for Quantitative Trading ArXiv ID: 2411.07585 “View on arXiv” Authors: Unknown Abstract The inherent volatility and dynamic fluctuations within the financial stock market underscore the necessity for investors to employ a comprehensive and reliable approach that integrates risk management strategies, market trends, and the movement trends of individual securities. By evaluating specific data, investors can make more informed decisions. However, the current body of literature lacks substantial evidence supporting the practical efficacy of reinforcement learning (RL) agents, as many models have only demonstrated success in back testing using historical data. This highlights the urgent need for a more advanced methodology capable of addressing these challenges. There is a significant disconnect in the effective utilization of financial indicators to better understand the potential market trends of individual securities. The disclosure of successful trading strategies is often restricted within financial markets, resulting in a scarcity of widely documented and published strategies leveraging RL. Furthermore, current research frequently overlooks the identification of financial indicators correlated with various market trends and their potential advantages. This research endeavors to address these complexities by enhancing the ability of RL agents to effectively differentiate between positive and negative buy/sell actions using financial indicators. While we do not address all concerns, this paper provides deeper insights and commentary on the utilization of technical indicators and their benefits within reinforcement learning. This work establishes a foundational framework for further exploration and investigation of more complex scenarios. ...

November 12, 2024 · 2 min · Research Team

Enhancing Risk Assessment in Transformers with Loss-at-Risk Functions

Enhancing Risk Assessment in Transformers with Loss-at-Risk Functions ArXiv ID: 2411.02558 “View on arXiv” Authors: Unknown Abstract In the financial field, precise risk assessment tools are essential for decision-making. Recent studies have challenged the notion that traditional network loss functions like Mean Square Error (MSE) are adequate, especially under extreme risk conditions that can lead to significant losses during market upheavals. Transformers and Transformer-based models are now widely used in financial forecasting according to their outstanding performance in time-series-related predictions. However, these models typically lack sensitivity to extreme risks and often underestimate great financial losses. To address this problem, we introduce a novel loss function, the Loss-at-Risk, which incorporates Value at Risk (VaR) and Conditional Value at Risk (CVaR) into Transformer models. This integration allows Transformer models to recognize potential extreme losses and further improves their capability to handle high-stakes financial decisions. Moreover, we conduct a series of experiments with highly volatile financial datasets to demonstrate that our Loss-at-Risk function improves the Transformers’ risk prediction and management capabilities without compromising their decision-making accuracy or efficiency. The results demonstrate that integrating risk-aware metrics during training enhances the Transformers’ risk assessment capabilities while preserving their core strengths in decision-making and reasoning across diverse scenarios. ...

November 4, 2024 · 2 min · Research Team

Conformal Predictive Portfolio Selection

Conformal Predictive Portfolio Selection ArXiv ID: 2410.16333 “View on arXiv” Authors: Unknown Abstract This study examines portfolio selection using predictive models for portfolio returns. Portfolio selection is a fundamental task in finance, and a variety of methods have been developed to achieve this goal. For instance, the mean-variance approach constructs portfolios by balancing the trade-off between the mean and variance of asset returns, while the quantile-based approach optimizes portfolios by considering tail risk. These methods often depend on distributional information estimated from historical data using predictive models, each of which carries its own uncertainty. To address this, we propose a framework for predictive portfolio selection via conformal prediction , called \emph{“Conformal Predictive Portfolio Selection”} (CPPS). Our approach forecasts future portfolio returns, computes the corresponding prediction intervals, and selects the portfolio of interest based on these intervals. The framework is flexible and can accommodate a wide range of predictive models, including autoregressive (AR) models, random forests, and neural networks. We demonstrate the effectiveness of the CPPS framework by applying it to an AR model and validate its performance through empirical studies, showing that it delivers superior returns compared to simpler strategies. ...

October 19, 2024 · 2 min · Research Team

Sample Average Approximation for Portfolio Optimization under CVaR constraint in an (re)insurance context

Sample Average Approximation for Portfolio Optimization under CVaR constraint in an (re)insurance context ArXiv ID: 2410.10239 “View on arXiv” Authors: Unknown Abstract We consider optimal allocation problems with Conditional Value-At-Risk (CVaR) constraint. We prove, under very mild assumptions, the convergence of the Sample Average Approximation method (SAA) applied to this problem, and we also exhibit a convergence rate and discuss the uniqueness of the solution. These results give (re)insurers a practical solution to portfolio optimization under market regulatory constraints, i.e. a certain level of risk. ...

October 14, 2024 · 2 min · Research Team