false

Data-driven Feynman-Kac Discovery with Applications to Prediction and Data Generation

Data-driven Feynman-Kac Discovery with Applications to Prediction and Data Generation ArXiv ID: 2511.08606 “View on arXiv” Authors: Qi Feng, Guang Lin, Purav Matlia, Denny Serdarevic Abstract In this paper, we propose a novel data-driven framework for discovering probabilistic laws underlying the Feynman-Kac formula. Specifically, we introduce the first stochastic SINDy method formulated under the risk-neutral probability measure to recover the backward stochastic differential equation (BSDE) from a single pair of stock and option trajectories. Unlike existing approaches to identifying stochastic differential equations-which typically require ergodicity-our framework leverages the risk-neutral measure, thereby eliminating the ergodicity assumption and enabling BSDE recovery from limited financial time series data. Using this algorithm, we are able not only to make forward-looking predictions but also to generate new synthetic data paths consistent with the underlying probabilistic law. ...

November 5, 2025 · 2 min · Research Team

Portfolio optimization in incomplete markets and price constraints determined by maximum entropy in the mean

Portfolio optimization in incomplete markets and price constraints determined by maximum entropy in the mean ArXiv ID: 2507.07053 “View on arXiv” Authors: Argimiro Arratia, Henryk Gzyl Abstract A solution to a portfolio optimization problem is always conditioned by constraints on the initial capital and the price of the available market assets. If a risk neutral measure is known, then the price of each asset is the discounted expected value of the asset’s price under this measure. But if the market is incomplete, the risk neutral measure is not unique, and there is a range of possible prices for each asset, which can be identified with bid-ask ranges. We present in this paper an effective method to determine the current prices of a collection of assets in incomplete markets, and such that these prices comply with the cost constraints for a portfolio optimization problem. Our workhorse is the method of maximum entropy in the mean to adjust a distortion function from bid-ask market data. This distortion function plays the role of a risk neutral measure, which is used to price the assets, and the distorted probability that it determines reproduces bid-ask market values. We carry out numerical examples to study the effect on portfolio returns of the computation of prices of the assets conforming the portfolio with the proposed methodology. ...

July 3, 2025 · 2 min · Research Team

Neural Term Structure of Additive Process for Option Pricing

Neural Term Structure of Additive Process for Option Pricing ArXiv ID: 2408.01642 “View on arXiv” Authors: Unknown Abstract The additive process generalizes the Lévy process by relaxing its assumption of time-homogeneous increments and hence covers a larger family of stochastic processes. Recent research in option pricing shows that modeling the underlying log price with an additive process has advantages in easier construction of the risk-neural measure, an explicit option pricing formula and characteristic function, and more flexibility to fit the implied volatility surface. Still, the challenge of calibrating an additive model arises from its time-dependent parameterization, for which one has to prescribe parametric functions for the term structure. For this, we propose the neural term structure model to utilize feedforward neural networks to represent the term structure, which alleviates the difficulty of designing parametric functions and thus attenuates the misspecification risk. Numerical studies with S&P 500 option data are conducted to evaluate the performance of the neural term structure. ...

August 3, 2024 · 2 min · Research Team