false

Calibrating the Heston model with deep differential networks

Calibrating the Heston model with deep differential networks ArXiv ID: 2407.15536 “View on arXiv” Authors: Unknown Abstract We propose a gradient-based deep learning framework to calibrate the Heston option pricing model (Heston, 1993). Our neural network, henceforth deep differential network (DDN), learns both the Heston pricing formula for plain-vanilla options and the partial derivatives with respect to the model parameters. The price sensitivities estimated by the DDN are not subject to the numerical issues that can be encountered in computing the gradient of the Heston pricing function. Thus, our network is an excellent pricing engine for fast gradient-based calibrations. Extensive tests on selected equity markets show that the DDN significantly outperforms non-differential feedforward neural networks in terms of calibration accuracy. In addition, it dramatically reduces the computational time with respect to global optimizers that do not use gradient information. ...

July 22, 2024 · 2 min · Research Team

Fast and Stable Credit Gamma of CVA

Fast and Stable Credit Gamma of CVA ArXiv ID: 2311.11672 “View on arXiv” Authors: Unknown Abstract Credit Valuation Adjustment is a balance sheet item which is nowadays subject to active risk management by specialized traders. However, one of the most important risk factors, which is the vector of default intensities of the counterparty, affects in a non-differentiable way the most general Monte Carlo estimator of the adjustment, through simulation of default times. Thus the computation of first and second order (pure and mixed) sensitivities involving these inputs cannot rely on direct path-wise differentiation, while any approach involving finite differences shows very high statistical noise. We present ad hoc analytical estimators which overcome these issues while offering very low runtime overheads over the baseline computation of the price adjustment. We also discuss the conversion of the so-obtained sensitivities to model parameters (e.g. default intensities) into sensitivities to market quotes (e.g. Credit Default Swap spreads). ...

November 20, 2023 · 2 min · Research Team