false

CatNet: Controlling the False Discovery Rate in LSTM with SHAP Feature Importance and Gaussian Mirrors

CatNet: Controlling the False Discovery Rate in LSTM with SHAP Feature Importance and Gaussian Mirrors ArXiv ID: 2411.16666 “View on arXiv” Authors: Unknown Abstract We introduce CatNet, an algorithm that effectively controls False Discovery Rate (FDR) and selects significant features in LSTM. CatNet employs the derivative of SHAP values to quantify the feature importance, and constructs a vector-formed mirror statistic for FDR control with the Gaussian Mirror algorithm. To avoid instability due to nonlinear or temporal correlations among features, we also propose a new kernel-based independence measure. CatNet performs robustly on different model settings with both simulated and real-world data, which reduces overfitting and improves interpretability of the model. Our framework that introduces SHAP for feature importance in FDR control algorithms and improves Gaussian Mirror can be naturally extended to other time-series or sequential deep learning models. ...

November 25, 2024 · 2 min · Research Team

Explainable Post hoc Portfolio Management Financial Policy of a Deep Reinforcement Learning agent

Explainable Post hoc Portfolio Management Financial Policy of a Deep Reinforcement Learning agent ArXiv ID: 2407.14486 “View on arXiv” Authors: Unknown Abstract Financial portfolio management investment policies computed quantitatively by modern portfolio theory techniques like the Markowitz model rely on a set on assumptions that are not supported by data in high volatility markets. Hence, quantitative researchers are looking for alternative models to tackle this problem. Concretely, portfolio management is a problem that has been successfully addressed recently by Deep Reinforcement Learning (DRL) approaches. In particular, DRL algorithms train an agent by estimating the distribution of the expected reward of every action performed by an agent given any financial state in a simulator. However, these methods rely on Deep Neural Networks model to represent such a distribution, that although they are universal approximator models, they cannot explain its behaviour, given by a set of parameters that are not interpretable. Critically, financial investors policies require predictions to be interpretable, so DRL agents are not suited to follow a particular policy or explain their actions. In this work, we developed a novel Explainable Deep Reinforcement Learning (XDRL) approach for portfolio management, integrating the Proximal Policy Optimization (PPO) with the model agnostic explainable techniques of feature importance, SHAP and LIME to enhance transparency in prediction time. By executing our methodology, we can interpret in prediction time the actions of the agent to assess whether they follow the requisites of an investment policy or to assess the risk of following the agent suggestions. To the best of our knowledge, our proposed approach is the first explainable post hoc portfolio management financial policy of a DRL agent. We empirically illustrate our methodology by successfully identifying key features influencing investment decisions, which demonstrate the ability to explain the agent actions in prediction time. ...

July 19, 2024 · 2 min · Research Team

Regional inflation analysis using social network data

Regional inflation analysis using social network data ArXiv ID: 2403.00774 “View on arXiv” Authors: Unknown Abstract Inflation is one of the most important macroeconomic indicators that have a great impact on the population of any country and region. Inflation is influenced by range of factors, one of which is inflation expectations. Many central banks take this factor into consideration while implementing monetary policy within the inflation targeting regime. Nowadays, a lot of people are active users of the Internet, especially social networks. There is a hypothesis that people search, read, and discuss mainly only those issues that are of particular interest to them. It is logical to assume that the dynamics of prices may also be in the focus of user discussions. So, such discussions could be regarded as an alternative source of more rapid information about inflation expectations. This study is based on unstructured data from Vkontakte social network to analyze upward and downward inflationary trends (on the example of the Omsk region). The sample of more than 8.5 million posts was collected between January 2010 and May 2022. The authors used BERT neural networks to solve the problem. These models demonstrated better results than the benchmarks (e.g., logistic regression, decision tree classifier, etc.). It makes possible to define pro-inflationary and disinflationary types of keywords in different contexts and get their visualization with SHAP method. This analysis provides additional operational information about inflationary processes at the regional level The proposed approach can be scaled for other regions. At the same time the limitation of the work is the time and power costs for the initial training of similar models for all regions of Russia. ...

February 14, 2024 · 2 min · Research Team

Enhancing Profitability and Investor Confidence through Interpretable AI Models for Investment Decisions

Enhancing Profitability and Investor Confidence through Interpretable AI Models for Investment Decisions ArXiv ID: 2312.16223 “View on arXiv” Authors: Unknown Abstract Financial forecasting plays an important role in making informed decisions for financial stakeholders, specifically in the stock exchange market. In a traditional setting, investors commonly rely on the equity research department for valuable reports on market insights and investment recommendations. The equity research department, however, faces challenges in effectuating decision-making do to the demanding cognitive effort required for analyzing the inherently volatile nature of market dynamics. Furthermore, financial forecasting systems employed by analysts pose potential risks in terms of interpretability and gaining the trust of all stakeholders. This paper presents an interpretable decision-making model leveraging the SHAP-based explainability technique to forecast investment recommendations. The proposed solution not only provides valuable insights into the factors that influence forecasted recommendations but also caters the investors of varying types, including those interested in daily and short-term investment opportunities. To ascertain the efficacy of the proposed model, a case study is devised that demonstrates a notable enhancement in investor’s portfolio value, employing our trading strategies. The results highlight the significance of incorporating interpretability in forecasting models to boost stakeholders’ confidence and foster transparency in the stock exchange domain. ...

December 24, 2023 · 2 min · Research Team

Enhanced Local Explainability and Trust Scores with Random Forest Proximities

Enhanced Local Explainability and Trust Scores with Random Forest Proximities ArXiv ID: 2310.12428 “View on arXiv” Authors: Unknown Abstract We initiate a novel approach to explain the predictions and out of sample performance of random forest (RF) regression and classification models by exploiting the fact that any RF can be mathematically formulated as an adaptive weighted K nearest-neighbors model. Specifically, we employ a recent result that, for both regression and classification tasks, any RF prediction can be rewritten exactly as a weighted sum of the training targets, where the weights are RF proximities between the corresponding pairs of data points. We show that this linearity facilitates a local notion of explainability of RF predictions that generates attributions for any model prediction across observations in the training set, and thereby complements established feature-based methods like SHAP, which generate attributions for a model prediction across input features. We show how this proximity-based approach to explainability can be used in conjunction with SHAP to explain not just the model predictions, but also out-of-sample performance, in the sense that proximities furnish a novel means of assessing when a given model prediction is more or less likely to be correct. We demonstrate this approach in the modeling of US corporate bond prices and returns in both regression and classification cases. ...

October 19, 2023 · 2 min · Research Team