false

Quantum Reservoir Computing for Realized Volatility Forecasting

Quantum Reservoir Computing for Realized Volatility Forecasting ArXiv ID: 2505.13933 “View on arXiv” Authors: Qingyu Li, Chiranjib Mukhopadhyay, Abolfazl Bayat, Ali Habibnia Abstract Recent advances in quantum computing have demonstrated its potential to significantly enhance the analysis and forecasting of complex classical data. Among these, quantum reservoir computing has emerged as a particularly powerful approach, combining quantum computation with machine learning for modeling nonlinear temporal dependencies in high-dimensional time series. As with many data-driven disciplines, quantitative finance and econometrics can hugely benefit from emerging quantum technologies. In this work, we investigate the application of quantum reservoir computing for realized volatility forecasting. Our model employs a fully connected transverse-field Ising Hamiltonian as the reservoir with distinct input and memory qubits to capture temporal dependencies. The quantum reservoir computing approach is benchmarked against several econometric models and standard machine learning algorithms. The models are evaluated using multiple error metrics and the model confidence set procedures. To enhance interpretability and mitigate current quantum hardware limitations, we utilize wrapper-based forward selection for feature selection, identifying optimal subsets, and quantifying feature importance via Shapley values. Our results indicate that the proposed quantum reservoir approach consistently outperforms benchmark models across various metrics, highlighting its potential for financial forecasting despite existing quantum hardware constraints. This work serves as a proof-of-concept for the applicability of quantum computing in econometrics and financial analysis, paving the way for further research into quantum-enhanced predictive modeling as quantum hardware capabilities continue to advance. ...

May 20, 2025 · 2 min · Research Team

Why Groups Matter: Necessity of Group Structures in Attributions

Why Groups Matter: Necessity of Group Structures in Attributions ArXiv ID: 2408.05701 “View on arXiv” Authors: Unknown Abstract Explainable machine learning methods have been accompanied by substantial development. Despite their success, the existing approaches focus more on the general framework with no prior domain expertise. High-stakes financial sectors have extensive domain knowledge of the features. Hence, it is expected that explanations of models will be consistent with domain knowledge to ensure conceptual soundness. In this work, we study the group structures of features that are naturally formed in the financial dataset. Our study shows the importance of considering group structures that conform to the regulations. When group structures are present, direct applications of explainable machine learning methods, such as Shapley values and Integrated Gradients, may not provide consistent explanations; alternatively, group versions of the Shapley value can provide consistent explanations. We contain detailed examples to concentrate on the practical perspective of our framework. ...

August 11, 2024 · 2 min · Research Team

Attribution Methods in Asset Pricing: Do They Account for Risk?

Attribution Methods in Asset Pricing: Do They Account for Risk? ArXiv ID: 2407.08953 “View on arXiv” Authors: Unknown Abstract Over the past few decades, machine learning models have been extremely successful. As a result of axiomatic attribution methods, feature contributions have been explained more clearly and rigorously. There are, however, few studies that have examined domain knowledge in conjunction with the axioms. In this study, we examine asset pricing in finance, a field closely related to risk management. Consequently, when applying machine learning models, we must ensure that the attribution methods reflect the underlying risks accurately. In this work, we present and study several axioms derived from asset pricing domain knowledge. It is shown that while Shapley value and Integrated Gradients preserve most axioms, neither can satisfy all axioms. Using extensive analytical and empirical examples, we demonstrate how attribution methods can reflect risks and when they should not be used. ...

July 12, 2024 · 2 min · Research Team

Interpretable Machine Learning Models for Predicting the Next Targets of Activist Funds

Interpretable Machine Learning Models for Predicting the Next Targets of Activist Funds ArXiv ID: 2404.16169 “View on arXiv” Authors: Unknown Abstract This research presents a predictive model to identify potential targets of activist investment funds–entities that acquire significant corporate stakes to influence strategic and operational decisions, ultimately enhancing shareholder value. Predicting such targets is crucial for companies aiming to mitigate intervention risks, activist funds seeking optimal investments, and investors looking to leverage potential stock price gains. Using data from the Russell 3000 index from 2016 to 2022, we evaluated 123 model configurations incorporating diverse imputation, oversampling, and machine learning techniques. Our best model achieved an AUC-ROC of 0.782, demonstrating its capability to effectively predict activist fund targets. To enhance interpretability, we employed the Shapley value method to identify key factors influencing a company’s likelihood of being targeted, highlighting the dynamic mechanisms underlying activist fund target selection. These insights offer a powerful tool for proactive corporate governance and informed investment strategies, advancing understanding of the mechanisms driving activist investment decisions. ...

April 24, 2024 · 2 min · Research Team