false

Optimizing Portfolio Performance through Clustering and Sharpe Ratio-Based Optimization: A Comparative Backtesting Approach

Optimizing Portfolio Performance through Clustering and Sharpe Ratio-Based Optimization: A Comparative Backtesting Approach ArXiv ID: 2501.12074 “View on arXiv” Authors: Unknown Abstract Optimizing portfolio performance is a fundamental challenge in financial modeling, requiring the integration of advanced clustering techniques and data-driven optimization strategies. This paper introduces a comparative backtesting approach that combines clustering-based portfolio segmentation and Sharpe ratio-based optimization to enhance investment decision-making. First, we segment a diverse set of financial assets into clusters based on their historical log-returns using K-Means clustering. This segmentation enables the grouping of assets with similar return characteristics, facilitating targeted portfolio construction. Next, for each cluster, we apply a Sharpe ratio-based optimization model to derive optimal weights that maximize risk-adjusted returns. Unlike traditional mean-variance optimization, this approach directly incorporates the trade-off between returns and volatility, resulting in a more balanced allocation of resources within each cluster. The proposed framework is evaluated through a backtesting study using historical data spanning multiple asset classes. Optimized portfolios for each cluster are constructed and their cumulative returns are compared over time against a traditional equal-weighted benchmark portfolio. ...

January 21, 2025 · 2 min · Research Team

Optimizing Sharpe Ratio: Risk-Adjusted Decision-Making in Multi-Armed Bandits

Optimizing Sharpe Ratio: Risk-Adjusted Decision-Making in Multi-Armed Bandits ArXiv ID: 2406.06552 “View on arXiv” Authors: Unknown Abstract Sharpe Ratio (SR) is a critical parameter in characterizing financial time series as it jointly considers the reward and the volatility of any stock/portfolio through its variance. Deriving online algorithms for optimizing the SR is particularly challenging since even offline policies experience constant regret with respect to the best expert Even-Dar et al (2006). Thus, instead of optimizing the usual definition of SR, we optimize regularized square SR (RSSR). We consider two settings for the RSSR, Regret Minimization (RM) and Best Arm Identification (BAI). In this regard, we propose a novel multi-armed bandit (MAB) algorithm for RM called UCB-RSSR for RSSR maximization. We derive a path-dependent concentration bound for the estimate of the RSSR. Based on that, we derive the regret guarantees of UCB-RSSR and show that it evolves as O(log n) for the two-armed bandit case played for a horizon n. We also consider a fixed budget setting for well-known BAI algorithms, i.e., sequential halving and successive rejects, and propose SHVV, SHSR, and SuRSR algorithms. We derive the upper bound for the error probability of all proposed BAI algorithms. We demonstrate that UCB-RSSR outperforms the only other known SR optimizing bandit algorithm, U-UCB Cassel et al (2023). We also establish its efficacy with respect to other benchmarks derived from the GRA-UCB and MVTS algorithms. We further demonstrate the performance of proposed BAI algorithms for multiple different setups. Our research highlights that our proposed algorithms will find extensive applications in risk-aware portfolio management problems. Consequently, our research highlights that our proposed algorithms will find extensive applications in risk-aware portfolio management problems. ...

May 28, 2024 · 2 min · Research Team

Multi-Factor Inception: What to Do with All of These Features?

Multi-Factor Inception: What to Do with All of These Features? ArXiv ID: 2307.13832 “View on arXiv” Authors: Unknown Abstract Cryptocurrency trading represents a nascent field of research, with growing adoption in industry. Aided by its decentralised nature, many metrics describing cryptocurrencies are accessible with a simple Google search and update frequently, usually at least on a daily basis. This presents a promising opportunity for data-driven systematic trading research, where limited historical data can be augmented with additional features, such as hashrate or Google Trends. However, one question naturally arises: how to effectively select and process these features? In this paper, we introduce Multi-Factor Inception Networks (MFIN), an end-to-end framework for systematic trading with multiple assets and factors. MFINs extend Deep Inception Networks (DIN) to operate in a multi-factor context. Similar to DINs, MFIN models automatically learn features from returns data and output position sizes that optimise portfolio Sharpe ratio. Compared to a range of rule-based momentum and reversion strategies, MFINs learn an uncorrelated, higher-Sharpe strategy that is not captured by traditional, hand-crafted factors. In particular, MFIN models continue to achieve consistent returns over the most recent years (2022-2023), where traditional strategies and the wider cryptocurrency market have underperformed. ...

July 25, 2023 · 2 min · Research Team